This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A140585 #38 Mar 17 2021 02:54:32 %S A140585 1,4,20,129,1012,9341,99213,1191392,15958404,235939211,3817327362, %T A140585 67103292438,1273789853650,25973844914959,566329335460917, %U A140585 13150556885604115,324045146807055210,8446201774570017379,232198473069120178475,6715304449424099384968 %N A140585 Total number of all hierarchical orderings for all set partitions of n. %H A140585 Vaclav Kotesovec, <a href="/A140585/b140585.txt">Table of n, a(n) for n = 1..420</a> (first 160 terms from Alois P. Heinz) %H A140585 Thomas Wieder, <a href="http://www.m-hikari.com/ams/ams-password-2009/ams-password53-56-2009/wiederAMS53-56-2009.pdf">The number of certain rankings and hierarchies formed from labeled or unlabeled elements and sets</a>, Applied Mathematical Sciences, vol. 3, 2009, no. 55, 2707 - 2724. [_Thomas Wieder_, Nov 14 2009] %F A140585 Stirling transform of A005651 = Sum of multinomial coefficients: a(n) = Sum_{i=1..n} S2(n,k) A005651(k). %F A140585 E.g.f.: 1/Product_{k>=1} (1 - (exp(x)-1)^k/k!). - _Thomas Wieder_, Sep 04 2008 %F A140585 a(n) ~ c * n! / (log(2))^n, where c = 1/(2*log(2)) * Product_{k>=2} 1/(1-1/k!) = A247551 / (2*log(2)) = 1.82463230250447246267598544320244231645906135137... . - _Vaclav Kotesovec_, Sep 04 2014, updated Jan 21 2017 %e A140585 We are considering all set partitions of the n-set {1,2,3,...,n}. %e A140585 For each such set partition we examine all possible hierarchical arrangements of the subsets. A hierarchy is a distribution of elements (sets in the present case) onto levels. %e A140585 A distribution onto levels is "hierarchical" if a level L+1 contains at most as many elements as level L. Thus for n=4 the arrangement {1,2}:{3}{4} is not allowed. %e A140585 Let the colon ":" separate two consecutive levels L and L+1. %e A140585 n=2 --> 1+3=4 %e A140585 {1,2} {1}{2} %e A140585 {1}:{2} %e A140585 {2}:{1} %e A140585 ----------------------- %e A140585 n=3 --> 1+9+10=20 %e A140585 1*1 3*3=9 1*10 %e A140585 {1,2,3} {1,2}{3} {1}{2}{3} %e A140585 {1,3}{2} %e A140585 {2,3}{1} {1}{2}:{3} %e A140585 {3}{1}:{2} %e A140585 {1,2}:{3} {2}{3}:{1} %e A140585 {1,3}:{2} %e A140585 {2,3}:{1} {1}:{2}:{3} %e A140585 {3}:{1}:{2} %e A140585 {3}:{1,2} {2}:{3}:{1} %e A140585 {2}:{1,3} {1}:{3}:{2} %e A140585 {1}:{2,3} {2}:{1}:{3} %e A140585 {3}:{2}:{1} %e A140585 ----------------------- %e A140585 n=4 --> 1+12+9+60+47=129 %e A140585 1*1 4*3=12 3*3=9 6*10=60 1*47 %e A140585 {1,2,3,4} {1,2,3}{4} {1,2}{3,4} {1,2}{3}{4} {1}{2}{3}{4} %e A140585 {1,2,4}{3} {1,3}{2,4} {1,2}{3}:{4} %e A140585 {1,3,4}{2} {1,4}{2,3} {1,2}{4}:{3} {1}{2}:{3}:{4} %e A140585 {2,3,4}{1} {1}{2}:{3,4} {1}{3}:{2}:{4} %e A140585 {1,2}:{3,4} {1,2}:{3}:{4} {1}{4}:{2}:{3} %e A140585 {1,2,3}:{4} {1,3}:{2,4} {1,2}:{4}:{3} {1}{2}:{4}:{3} %e A140585 {1,2,4}:{3} {1,4}:{2,3} {1}:{2}:{3,4} {1}{3}:{4}:{2} %e A140585 {1,3,4}:{2} {3,4}:{1,2} {2}:{1}:{3,4} {1}{4}:{3}:{2} %e A140585 {2,3,4}:{1} {2,4}:{1,3} {1}:{3,4}:{2} %e A140585 {2,3}:{1,4} {2}:{3,4}:{1} {2}{3}:{1}:{4} %e A140585 {4}:{1,2,3} {2}{4}:{1}:{3} %e A140585 {3}:{1,2,4} likewise for: {2}{3}:{4}:{1} %e A140585 {2}:{1,3,4} {3,4}{1}{2} {2}{4}:{3}:{1} %e A140585 {1}:{2,3,4} {2,4}{1}{3} %e A140585 {2,3}{1}{4} {3}{4}:{1}:{2} %e A140585 {1,4}{2}{3} {3}{4}:{2}:{1} %e A140585 {1,3}{2}{4} %e A140585 {1}{2}:{3}{4} %e A140585 {1}{3}:{2}{4} %e A140585 {1}{4}:{2}{3} %e A140585 {2}{3}:{1}{4} %e A140585 {2}{4}:{1}{3} %e A140585 {3}{4}:{1}{2} %e A140585 {2}{3}{4}:{1} %e A140585 {1}{3}{4}:{2} %e A140585 {1}{2}{4}:{3} %e A140585 {1}{2}{3}:{4} %e A140585 {1}:{2}:{3}:{4} %e A140585 +23 permutations %p A140585 A140585 := proc(n::integer) local k, Result; Result:=0: for k from 1 to n do Result:=Result+stirling2(n,k)*A005651(k); end do; lprint(Result); end proc; %p A140585 E.g.f.: series(1/mul(1-(exp(x)-1)^k/k!,k=1..10),x=0,10). # _Thomas Wieder_, Sep 04 2008 %p A140585 # second Maple program: %p A140585 with(numtheory): b:= proc(k) option remember; add(d/d!^(k/d), d=divisors(k)) end: c:= proc(n) option remember; `if`(n=0, 1, add((n-1)!/ (n-k)!* b(k)* c(n-k), k=1..n)) end: a:= n-> add(Stirling2(n, k) *c(k), k=1..n): seq(a(n), n=1..30); # _Alois P. Heinz_, Oct 10 2008 %t A140585 Table[n!*SeriesCoefficient[1/Product[(1-(E^x-1)^k/k!),{k,1,n}],{x,0,n}],{n,1,20}] (* _Vaclav Kotesovec_, Sep 03 2014 *) %Y A140585 Cf. A005651, A075729, A034691, A083355, A109186, A000670. %K A140585 nonn %O A140585 1,2 %A A140585 _Thomas Wieder_, May 17 2008 %E A140585 More terms from _Alois P. Heinz_, Oct 10 2008