cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A140585 Total number of all hierarchical orderings for all set partitions of n.

This page as a plain text file.
%I A140585 #38 Mar 17 2021 02:54:32
%S A140585 1,4,20,129,1012,9341,99213,1191392,15958404,235939211,3817327362,
%T A140585 67103292438,1273789853650,25973844914959,566329335460917,
%U A140585 13150556885604115,324045146807055210,8446201774570017379,232198473069120178475,6715304449424099384968
%N A140585 Total number of all hierarchical orderings for all set partitions of n.
%H A140585 Vaclav Kotesovec, <a href="/A140585/b140585.txt">Table of n, a(n) for n = 1..420</a> (first 160 terms from Alois P. Heinz)
%H A140585 Thomas Wieder, <a href="http://www.m-hikari.com/ams/ams-password-2009/ams-password53-56-2009/wiederAMS53-56-2009.pdf">The number of certain rankings and hierarchies formed from labeled or unlabeled elements and sets</a>, Applied Mathematical Sciences, vol. 3, 2009, no. 55, 2707 - 2724. [_Thomas Wieder_, Nov 14 2009]
%F A140585 Stirling transform of A005651 = Sum of multinomial coefficients: a(n) = Sum_{i=1..n} S2(n,k) A005651(k).
%F A140585 E.g.f.: 1/Product_{k>=1} (1 - (exp(x)-1)^k/k!). - _Thomas Wieder_, Sep 04 2008
%F A140585 a(n) ~ c * n! / (log(2))^n, where c = 1/(2*log(2)) * Product_{k>=2} 1/(1-1/k!) = A247551 / (2*log(2)) = 1.82463230250447246267598544320244231645906135137... . - _Vaclav Kotesovec_, Sep 04 2014, updated Jan 21 2017
%e A140585 We are considering all set partitions of the n-set {1,2,3,...,n}.
%e A140585 For each such set partition we examine all possible hierarchical arrangements of the subsets. A hierarchy is a distribution of elements (sets in the present case) onto levels.
%e A140585 A distribution onto levels is "hierarchical" if a level L+1 contains at most as many elements as level L. Thus for n=4 the arrangement {1,2}:{3}{4} is not allowed.
%e A140585 Let the colon ":" separate two consecutive levels L and L+1.
%e A140585 n=2 --> 1+3=4
%e A140585 {1,2} {1}{2}
%e A140585 {1}:{2}
%e A140585 {2}:{1}
%e A140585 -----------------------
%e A140585 n=3 --> 1+9+10=20
%e A140585 1*1 3*3=9 1*10
%e A140585 {1,2,3} {1,2}{3} {1}{2}{3}
%e A140585 {1,3}{2}
%e A140585 {2,3}{1} {1}{2}:{3}
%e A140585 {3}{1}:{2}
%e A140585 {1,2}:{3} {2}{3}:{1}
%e A140585 {1,3}:{2}
%e A140585 {2,3}:{1} {1}:{2}:{3}
%e A140585 {3}:{1}:{2}
%e A140585 {3}:{1,2} {2}:{3}:{1}
%e A140585 {2}:{1,3} {1}:{3}:{2}
%e A140585 {1}:{2,3} {2}:{1}:{3}
%e A140585 {3}:{2}:{1}
%e A140585 -----------------------
%e A140585 n=4 --> 1+12+9+60+47=129
%e A140585 1*1 4*3=12 3*3=9 6*10=60 1*47
%e A140585 {1,2,3,4} {1,2,3}{4} {1,2}{3,4} {1,2}{3}{4} {1}{2}{3}{4}
%e A140585 {1,2,4}{3} {1,3}{2,4} {1,2}{3}:{4}
%e A140585 {1,3,4}{2} {1,4}{2,3} {1,2}{4}:{3} {1}{2}:{3}:{4}
%e A140585 {2,3,4}{1} {1}{2}:{3,4} {1}{3}:{2}:{4}
%e A140585 {1,2}:{3,4} {1,2}:{3}:{4} {1}{4}:{2}:{3}
%e A140585 {1,2,3}:{4} {1,3}:{2,4} {1,2}:{4}:{3} {1}{2}:{4}:{3}
%e A140585 {1,2,4}:{3} {1,4}:{2,3} {1}:{2}:{3,4} {1}{3}:{4}:{2}
%e A140585 {1,3,4}:{2} {3,4}:{1,2} {2}:{1}:{3,4} {1}{4}:{3}:{2}
%e A140585 {2,3,4}:{1} {2,4}:{1,3} {1}:{3,4}:{2}
%e A140585 {2,3}:{1,4} {2}:{3,4}:{1} {2}{3}:{1}:{4}
%e A140585 {4}:{1,2,3} {2}{4}:{1}:{3}
%e A140585 {3}:{1,2,4} likewise for: {2}{3}:{4}:{1}
%e A140585 {2}:{1,3,4} {3,4}{1}{2} {2}{4}:{3}:{1}
%e A140585 {1}:{2,3,4} {2,4}{1}{3}
%e A140585 {2,3}{1}{4} {3}{4}:{1}:{2}
%e A140585 {1,4}{2}{3} {3}{4}:{2}:{1}
%e A140585 {1,3}{2}{4}
%e A140585 {1}{2}:{3}{4}
%e A140585 {1}{3}:{2}{4}
%e A140585 {1}{4}:{2}{3}
%e A140585 {2}{3}:{1}{4}
%e A140585 {2}{4}:{1}{3}
%e A140585 {3}{4}:{1}{2}
%e A140585 {2}{3}{4}:{1}
%e A140585 {1}{3}{4}:{2}
%e A140585 {1}{2}{4}:{3}
%e A140585 {1}{2}{3}:{4}
%e A140585 {1}:{2}:{3}:{4}
%e A140585 +23 permutations
%p A140585 A140585 := proc(n::integer) local k, Result; Result:=0: for k from 1 to n do Result:=Result+stirling2(n,k)*A005651(k); end do; lprint(Result); end proc;
%p A140585 E.g.f.: series(1/mul(1-(exp(x)-1)^k/k!,k=1..10),x=0,10). # _Thomas Wieder_, Sep 04 2008
%p A140585 # second Maple program:
%p A140585 with(numtheory): b:= proc(k) option remember; add(d/d!^(k/d), d=divisors(k)) end: c:= proc(n) option remember; `if`(n=0, 1, add((n-1)!/ (n-k)!* b(k)* c(n-k), k=1..n)) end: a:= n-> add(Stirling2(n, k) *c(k), k=1..n): seq(a(n), n=1..30); # _Alois P. Heinz_, Oct 10 2008
%t A140585 Table[n!*SeriesCoefficient[1/Product[(1-(E^x-1)^k/k!),{k,1,n}],{x,0,n}],{n,1,20}] (* _Vaclav Kotesovec_, Sep 03 2014 *)
%Y A140585 Cf. A005651, A075729, A034691, A083355, A109186, A000670.
%K A140585 nonn
%O A140585 1,2
%A A140585 _Thomas Wieder_, May 17 2008
%E A140585 More terms from _Alois P. Heinz_, Oct 10 2008