This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A140620 #20 Aug 05 2014 14:16:31 %S A140620 23,263,503,647,887,1223,1583,1823,1847,2063,2207,2447,2687,2903,3407, %T A140620 3527,3623,3767,4007,4463,4703,4943,4967,5087,5303,5807,5903,5927, %U A140620 6263,6863,7127,7487,7583,7823,8087,8423,8447,9623,9767,10007,10247 %N A140620 Primes of the form 23x^2+4xy+68y^2. %C A140620 Discriminant=-6240. Also primes of the form 23x^2+18xy+207y^2. %C A140620 In base 12, the sequence is 1E, 19E, 35E, 45E, 61E, 85E, XEE, 107E, 109E, 123E, 133E, 14EE, 167E, 181E, 1E7E, 205E, 211E, 221E, 239E, 26EE, 287E, 2X3E, 2X5E, 2E3E, 309E, 343E, 34EE, 351E, 375E, 3E7E, 415E, 43EE, 447E, 463E, 481E, 4X5E, 4X7E, 569E, 579E, 595E, 5E1E, where X is 10 and E is 11. Moreover, the discriminant is -3740. - _Walter Kehowski_, Jun 01 2008 %H A140620 Vincenzo Librandi and Ray Chandler, <a href="/A140620/b140620.txt">Table of n, a(n) for n = 1..10000</a> [First 1000 terms from Vincenzo Librandi] %H A140620 N. J. A. Sloane et al., <a href="https://oeis.org/wiki/Binary_Quadratic_Forms_and_OEIS">Binary Quadratic Forms and OEIS</a> (Index to related sequences, programs, references) %t A140620 Union[QuadPrimes2[23, 4, 68, 10000], QuadPrimes2[23, -4, 68, 10000]] (* see A106856 *) %Y A140620 Cf. A140633. %K A140620 nonn,easy %O A140620 1,1 %A A140620 _T. D. Noe_, May 19 2008