This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A140631 #20 Aug 05 2014 14:16:32 %S A140631 193,457,1033,2017,2137,2377,3217,3313,3697,4153,5233,6073,6337,7057, %T A140631 7417,7753,8353,9433,10753,11113,11617,11953,12097,12433,12553,13297, %U A140631 14737,15073,16417,16633,16993,17257,17977,19273,20113,20353,20857 %N A140631 Primes of the form 57x^2+18xy+193y^2. %C A140631 Discriminant=-43680. Also primes of the form 148x^2+132xy+177y^2. %C A140631 In base 12, the sequence is 141, 321, 721, 1201, 12X1, 1461, 1X41, 1E01, 2181, 24X1, 3041, 3621, 3801, 4101, 4361, 45X1, 4X01, 5561, 6281, 6521, 6881, 6E01, 7001, 7241, 7321, 7841, 8641, 8881, 9601, 9761, 9X01, 9EX1, X4X1, E1X1, E781, E941, 100X1, where X is 10 and E is 11. Moreover, the discriminant is -21340. - _Walter Kehowski_, Jun 01 2008 %H A140631 Vincenzo Librandi and Ray Chandler, <a href="/A140631/b140631.txt">Table of n, a(n) for n = 1..10000</a> [First 1000 terms from Vincenzo Librandi] %H A140631 N. J. A. Sloane et al., <a href="https://oeis.org/wiki/Binary_Quadratic_Forms_and_OEIS">Binary Quadratic Forms and OEIS</a> (Index to related sequences, programs, references) %t A140631 Union[QuadPrimes2[57, 18, 193, 10000], QuadPrimes2[57, -18, 193, 10000]] (* see A106856 *) %Y A140631 Cf. A140633. %K A140631 nonn,easy %O A140631 1,1 %A A140631 _T. D. Noe_, May 19 2008