A140662 Number of possible column states for self-avoiding polygons in a slit of width n.
1, 3, 8, 20, 50, 126, 322, 834, 2187, 5797, 15510, 41834, 113633, 310571, 853466, 2356778, 6536381, 18199283, 50852018, 142547558, 400763222, 1129760414, 3192727796, 9043402500, 25669818475, 73007772801, 208023278208, 593742784828, 1697385471210, 4859761676390
Offset: 1
Examples
The 20 Motzkin-paths of length 5 with at least one up-step are: UUDDF, UUDFD, UUFDD, UDUDF, UDUFD, UDFUD, UDFFF, UFUDD, UFDUD, UFDFF, UFFDF, UFFFD, FUUDD, FUDUD, FUDFF, FUFDF, FUFFD, FFUDF, FFUFD, FFFUD.
Links
- J. Alvarez, E.J. Janse van Rensburg et al. Self-avoiding walks and polygons in slits.
- Xiaomei Chen, Counting humps and peaks in Motzkin paths with height k, arXiv:2412.00668 [math.CO], 2024. See p. 7.
- Louis Marin, Counting Polyominoes in a Rectangle b X h, arXiv:2406.16413 [cs.DM], 2024. See p. 148.
Crossrefs
Programs
-
Maple
a := n -> n*(n + 1)*hypergeom([1, -n/2 + 1, 1/2 - n/2], [2, 3], 4)/2: seq(simplify(a(n)), n = 1..30); # Peter Luschny, Dec 03 2024
-
Python
# A generator of the Motzkin-paths with at least one up-step. C = str.count def aGen(n: int): # -> Generator[str, Any, list[str]] a = [""] for w in a: if len(w) == n + 1: if (C(w, "U") > 0 and C(w, "U") == C(w, "D")): yield w else: for j in "UDF": u = w + j if C(u, "U") >= C(u, "D"): a += [u] return a for n in range(1, 6): SAP = [w for w in aGen(n)] print(len(SAP), ":", SAP) # Peter Luschny, Dec 03 2024
Formula
a(n) = Sum_{m=1..[(n+1)/2]} (n+1)!/((n+1-2m)!m!(m+1)!).
a(n) = A001006(n + 1) - 1. [Corrected by Peter Luschny, Dec 03 2024]
D-finite with recurrence (n+3)*a(n) + (-4*n-7)*a(n-1) + (2*n+3)*a(n-2) + (4*n-5)*a(n-3) + 3*(-n+2)*a(n-4) = 0. - R. J. Mathar, Nov 01 2021
From Peter Luschny, Dec 03 2024: (Start)
a(n) = (1/2)*n*(n + 1)*hypergeom([1, -n/2 + 1, 1/2 - n/2], [2, 3], 4).
a(n) = n!*[x^n]((exp(x)*(-x^3 + 2*(2*x - 3)*x*BesselI(0,2*x) + (x*(5*x - 4) + 6)*BesselI(1, 2* x)))/x^3). (End)
Comments