This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A140702 #16 Feb 16 2025 08:33:08 %S A140702 40,1625,151776,27316471,8429601664,4108830350625,2977546171600000, %T A140702 3062351613203813051,4308809606735976861696,8050856986181775515023417, %U A140702 19490752185922086291273856000,59888297825402713913058605859375,229474927848540723655596345639141376 %N A140702 Main diagonal of array A(k,n) = product of first n centered n-gonal numbers. %C A140702 For analog with regular (not centered) n-gonal numbers, see A133401. %C A140702 Array A(k,n) = k-th polygorial(n,k) begins: %C A140702 k | CenteredPolygorial(n,k) %C A140702 ---+------------------------- %C A140702 3 | 1 4 40 760 23560 1083760 69360640 5895654400 A140701 %C A140702 4 | 1 5 65 1625 66625 4064125 345450625 39035920625 %C A140702 5 | 1 6 96 2976 151776 11534976 1222707456 172401751296 %C A140702 6 | 1 7 133 4921 300181 27316471 3469191817 586293417073 %C A140702 7 | 1 8 176 7568 537328 56956768 8429601664 1660631527808 %C A140702 8 | 1 9 225 11025 893025 108056025 18261468225 4108830350625 %C A140702 9 | 1 10 280 15400 1401400 190590400 36212176000 9161680528000 %H A140702 Nathaniel Johnston, <a href="/A140702/b140702.txt">Table of n, a(n) for n = 3..100</a> %H A140702 Eric W. Weisstein, <a href="https://mathworld.wolfram.com/CenteredTriangularNumber.html">Centered Triangular Number</a>. %F A140702 a(n) ~ Pi * n^(3*n-1) / (exp(2*n) * 2^(n-2)). - _Vaclav Kotesovec_, Jul 11 2015 %e A140702 a(3) = 3rd centered polygorial number polygorial(3,3) = A140701(3) = product of the first 3 centered triangular numbers = 1 * 4 * 10 = 40. %e A140702 a(4) = 4th centered polygorial number centered polygorial(4,4) = product of the first 4 centered square numbers A001844 = 1 * 5 * 13 * 25 = 1625. %e A140702 a(5) = 5th centered pentagorial number centered polygorial(5,5) = product of the first 5 centered pentagonal numbers A005891 = 1 * 5 * 12 * 22 * 35 = 151776. %e A140702 a(6) = 6th centered hexagorial number centered polygorial(6,6) = product of the first 6 centered hexagonal numbers A003215 = 1 * 7 * 19 * 37 * 61 * 91 = 27316471. %p A140702 A140702 := proc(n) mul(n*k*(k-1)/2+1,k=1..n): end: seq(A140702(n),n=3..15); # _Nathaniel Johnston_, Oct 01 2011 %t A140702 Table[Product[n*k*(k-1)/2+1,{k,1,n}],{n,3,20}] (* _Vaclav Kotesovec_, Jul 11 2015 *) %Y A140702 Cf. A005448, A006003, A006472, A133401, A140701. %K A140702 easy,nonn %O A140702 3,1 %A A140702 _Jonathan Vos Post_, May 24 2008 %E A140702 a(9) corrected and more terms from _Nathaniel Johnston_, Oct 01 2011