cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A140710 Number of maximal initial consecutive columns ending at the same level, summed over all deco polyominoes of height n.

This page as a plain text file.
%I A140710 #19 Jul 26 2022 13:48:44
%S A140710 1,3,10,38,172,944,6208,47696,417952,4101824,44491648,528068096,
%T A140710 6804155392,94559581184,1409615239168,22434345998336,379633330204672,
%U A140710 6805952938041344,128854632579186688,2568966172926181376
%N A140710 Number of maximal initial consecutive columns ending at the same level, summed over all deco polyominoes of height n.
%C A140710 A deco polyomino is a directed column-convex polyomino in which the height, measured along the diagonal, is attained only in the last column.
%H A140710 G. C. Greubel, <a href="/A140710/b140710.txt">Table of n, a(n) for n = 1..440</a>
%H A140710 E. Barcucci, A. Del Lungo and R. Pinzani, <a href="http://dx.doi.org/10.1016/0304-3975(95)00199-9">"Deco" polyominoes, permutations and random generation</a>, Theoretical Computer Science, 159, 1996, 29-42.
%F A140710 a(n) = 2^(n-1) * (1 + Sum_{j=1..n-1} j*j!/2^j ).
%F A140710 a(n) = (n-1)!*(n-1) + 2*a(n-1) with a(1) = 1.
%F A140710 a(n) = Sum_{k=1..n} k*A140709(n,k).
%F A140710 (1 + x + 2*x^2 + 4*x^3 + 8*x^4 + ...)*(1 + 2*x + 6*x^2 + 24*x^3 + 120*x^4 + ...) = (1 + 3*x + 10*x^2 + 38*x^3 + 172*x^4 + ...) which is (Sum_{n>=0} A011782(n)*x^n) * (Sum_{n>=0} A000142(n+1)*x^n) = Sum_{n>=0} a(n+1)*x^n. - _Gary W. Adamson_, Feb 24 2012
%F A140710 a(n) = Sum_{j=0..n} (j+1)!*A011782(n-j) = (n+1)! + Sum_{j=0..n-1} 2^(n-k-1)*(j+1)!. - _G. C. Greubel_, May 03 2021
%F A140710 D-finite with recurrence a(n) +(-n-3)*a(n-1) +3*n*a(n-2) +2*(-n+2)*a(n-3)=0. - _R. J. Mathar_, Jul 26 2022
%e A140710 a(3)=10 because the 6 deco polyominoes of height 3 have columns ending at levels 3, 22, 12, 111, 22, 122, respectively and 1+2+1+3+2+1=10.
%p A140710 a:=proc(n) options operator, arrow: 2^(n-1)*(1+sum(j^2*factorial(j-1)/2^j, j= 1..n-1)) end proc: seq(a(n),n=1..20);
%t A140710 Table[2^(n-1)*(1 + Sum[j*j!/2^j, {j,n-1}]), {n,30}] (* _G. C. Greubel_, May 02 2021 *)
%o A140710 (Magma) [2^(n-1)*(&+[j*Factorial(j)/2^j: j in [1..n-1]]): n in [1..30]]; // _G. C. Greubel_, May 02 2021
%o A140710 (Sage) [2^(n-1)*sum(j*factorial(j)/2^j for j in (1..n-1)) for n in (1..30)] # _G. C. Greubel_, May 02 2021
%Y A140710 Cf. A000142, A011782, A140709.
%Y A140710 Row sums of A227550/2.
%K A140710 nonn
%O A140710 1,2
%A A140710 _Emeric Deutsch_, Jun 03 2008