This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A140736 #11 Nov 14 2023 04:44:39 %S A140736 1,1,1,1,1,1,3,2,1,1,1,5,4,6,3,1,1,1,7,6,15,10,10,4,1,1,1,9,8,28,21, %T A140736 35,20,15,5,1,1,1,11,10,45,36,84,56,70,35,21,6,1,1,1,13,12,66,55,165, %U A140736 120,210,126,126,56,28,7,1 %N A140736 Triangle read by rows, X^n * [1,0,0,0,...]; where X = a tridiagonal matrix with (1,0,1,0,1,...) in the main diagonal and (1,1,1,...) in the sub- and subsubdiagonals. %C A140736 A140737 = triangle with reversed terms by rows. - _Gary W. Adamson_, May 25 2008 %C A140736 T(n,k) is the element in column 1 of row k of the n-th power of the (2n+1)X(2n+1) tridiagonal matrix X with X(r,c) = 1 if (r=c and r odd) or r=c+1 or r=c+2. - _R. J. Mathar_, Nov 14 2023 %e A140736 First few rows of the triangle are: %e A140736 1; %e A140736 1, 1, 1; %e A140736 1, 1, 3, 2, 1; %e A140736 1, 1, 5, 4, 6, 3, 1; %e A140736 1, 1, 7, 6, 15, 10, 10, 4, 1; %e A140736 1, 1, 9, 8, 28, 21, 35, 20, 15, 5, 1; %e A140736 1, 1, 11, 20, 45, 36, 84, 56, 70, 35, 21, 6, 1; %e A140736 1, 1, 13, 12, 66, 55, 165, 120, 210, 126, 126, 56, 28, 7, 1; %e A140736 ... %p A140736 A140736 := proc(n,k) %p A140736 local X,r,c ; %p A140736 X := Matrix(2*n+1,2*n+1) ; %p A140736 for r from 1 to 2*n+1 do %p A140736 for c from 1 to 2*n+1 do %p A140736 if r = c then %p A140736 if type(r,'odd') then %p A140736 X[r,c] := 1 ; %p A140736 else %p A140736 X[r,c] := 0 ; %p A140736 end if ; %p A140736 elif r = c+1 or r=c+2 then %p A140736 X[r,c] := 1 ; %p A140736 end if; %p A140736 end do: %p A140736 end do: %p A140736 LinearAlgebra[MatrixPower](X,n) ; %p A140736 %[k,1] ; %p A140736 end proc: %p A140736 seq(seq( A140736(n,k),k=1..2*n+1),n=0..12) ; # _R. J. Mathar_, Nov 14 2023 %Y A140736 Cf. A001906 (row sums). %Y A140736 Cf. A140737, A005408 (3rd column), A005843 (4th column), A000384 (5th column), A014105 (6th column), A000447 (7th column) %K A140736 nonn,tabf,easy %O A140736 0,7 %A A140736 _Gary W. Adamson_ and _Roger L. Bagula_, May 25 2008