This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A140749 #29 Jan 31 2025 08:25:01 %S A140749 1,-1,1,1,-1,1,-1,11,-3,1,1,-5,7,-2,1,-1,137,-15,17,-5,1,1,-7,29,-7, %T A140749 25,-3,1,-1,363,-469,967,-35,23,-7,1,1,-761,29531,-89,1069,-9,91,-4,1, %U A140749 -1,7129,-1303,4523,-285,3013,-105,29,-9,1,1,-671,16103,-7645,31063,-781,4781,-55,12,-5,1 %N A140749 Triangle c(n,k) of the numerators of coefficients [x^k] P(n,x) of the polynomials P(n,x) of A129891. %C A140749 The polynomials P(n,x) are defined in A129891: P(0,x)=1 and %C A140749 P(n,x) = (-1)^n/(n+1) + x* Sum_{i=0..n-1} (-1)^i*P(n-1-i,x)/(i+1) = Sum_{k=0..n} c(n,k)*x^k. %D A140749 Paul Curtz, Gazette des Mathématiciens, 1992, 52, p. 44. %D A140749 Paul Curtz, Intégration Numérique .. Note 12 du Centre de Calcul Scientifique de l'Armement, Arcueil, 1969. Now in 35170, Bruz. %D A140749 P. Flajolet, X. Gourdon, and B. Salvy, Sur une famille de polynômes issus de l'analyse numérique, Gazette des Mathématiciens, 1993, 55, pp. 67-78. %H A140749 G. C. Greubel, <a href="/A140749/b140749.txt">Rows n = 0..50 of the triangle, flattened</a> %H A140749 Jean-François Alcover, <a href="/A140749/a140749.pdf">Plot showing roots of P(200,x) in shape of a cardioid</a> %F A140749 (n+1)*c(n,k) = (n+1-k)*c(n-1,k) - n*c(n-1, k-1). [Edgard Bavencoffe in 1992] %F A140749 Equals Numerators of A048594(n+1,k+1)/(n+1)!. - _Paul Curtz_, Jul 17 2008 %e A140749 The polynomials, for n =0,1,2, ..., are %e A140749 P(0, x) = 1; %e A140749 P(1, x) = -1/2 + x; %e A140749 P(2, x) = 1/3 - x + x^2; %e A140749 P(3, x) = -1/4 + 11/12*x - 3/2*x^2 + x^3; %e A140749 P(4, x) = 1/5 - 5/6*x + 7/4*x^2 - 2*x^3 + x^4; %e A140749 P(5, x) = -1/6 + 137/180*x - 15/8*x^2 + 17/6*x^3 - 5/2*x^4 + x^5; %e A140749 and the coefficients are %e A140749 1; %e A140749 -1/2, 1; %e A140749 1/3, -1, 1; %e A140749 -1/4, 11/12, -3/2, 1; %e A140749 1/5, -5/6, 7/4, -2, 1; %e A140749 -1/6, 137/180, -15/8, 17/6, -5/2, 1; %e A140749 1/7, -7/10, 29/15, -7/2, 25/6, -3, 1;. %p A140749 P := proc(n,x) option remember ; if n =0 then 1; else (-1)^n/(n+1)+x*add( (-1)^i/(i+1)*procname(n-1-i,x),i=0..n-1) ; expand(%) ; fi; end: %p A140749 A140749 := proc(n,k) p := P(n,x) ; numer(coeftayl(p,x=0,k)) ; end: seq(seq(A140749(n, k),k=0..n),n=0..13) ; # _R. J. Mathar_, Aug 24 2009 %t A140749 p[0] = 1; p[n_] := p[n] = (-1)^n/(n+1) + x*Sum[(-1)^k*p[n-1-k] / (k+1), {k, 0, n-1}]; %t A140749 Numerator[ Flatten[ Table[ CoefficientList[p[n], x], {n, 0, 11}]]][[1 ;; 69]] (* _Jean-François Alcover_, Jun 17 2011 *) %t A140749 Table[Numerator[(k+1)!*StirlingS1[n+1,k+1]/(n+1)!], {n,0,12}, {k,0,n} ]//Flatten (* _G. C. Greubel_, Oct 24 2023 *) %o A140749 (Magma) [Numerator(Factorial(k+1)*StirlingFirst(n+1,k+1)/Factorial(n+1) ): k in [0..n], n in [0..12]]; // _G. C. Greubel_, Oct 24 2023 %o A140749 (SageMath) %o A140749 def A048594(n,k): return (-1)^(n-k)*numerator(factorial(k+1)* stirling_number1(n+1,k+1)/factorial(n+1)) %o A140749 flatten([[A048594(n,k) for k in range(n+1)] for n in range(13)]) # _G. C. Greubel_, Oct 24 2023 %Y A140749 Cf. A048594, A129891, A141412 (denominators). %K A140749 sign,frac,tabl %O A140749 0,8 %A A140749 _Paul Curtz_, Jul 13 2008 %E A140749 Edited and extended by _R. J. Mathar_, Aug 24 2009