cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A140761 Primes p(j) = A000040(j), j>=1, such that p(1)*p(2)*...*p(j) is an integral multiple of p(1)+p(2)+...+p(j).

Original entry on oeis.org

2, 5, 19, 41, 83, 163, 167, 179, 191, 223, 229, 241, 263, 269, 271, 317, 337, 349, 367, 389, 433, 463, 491, 521, 701, 719, 757, 809, 823, 829, 859, 877, 883, 919, 941, 971, 991, 997, 1021, 1033, 1049, 1091, 1153, 1181, 1193, 1223, 1291, 1301, 1319, 1327, 1361
Offset: 1

Views

Author

Enoch Haga, May 28 2008

Keywords

Examples

			a(2) = 5 because it is the last consecutive prime in the run 2*3*5 = 30 and 2+3+5 = 10; since 30/10 = 3, it is the first integral quotient.
		

Crossrefs

Programs

  • Mathematica
    seq = {}; sum = 0; prod = 1; p = 1; Do[p = NextPrime[p]; prod *= p; sum += p; If[Divisible[prod, sum], AppendTo[seq, p]], {200}]; seq (* Amiram Eldar, Nov 02 2020 *)

Formula

Find integral quotients of products of consecutive primes divided by their sum.
a(n) = A000040(A051838(n)). - R. J. Mathar, Jun 09 2008

Extensions

Edited by R. J. Mathar, Jun 09 2008
a(1) added by Amiram Eldar, Nov 02 2020