This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A140818 #20 Mar 23 2025 13:48:16 %S A140818 1,2,2,2,2,2,2,6,6,2,2,8,6,8,2,2,10,20,20,10,2,2,12,30,20,30,12,2,2, %T A140818 14,42,70,70,42,14,2,2,16,56,112,70,112,56,16,2,2,18,72,168,252,252, %U A140818 168,72,18,2 %N A140818 Coefficients of Hodge diamond binomial 'X' matrices as polynomials: matrix example; M={{1,0,1}. {0,2,0], {1,0,1}: M(d, x, y)= Sum[Sum[If[n == m, Binomial[d - 1, m - 1], If[n == d - m + 1, Binomial[d - 1, n - 1], 0]]*x^(n - 1)*y^(m - 1), {n, 1, d}], {m, 1, d}] . %C A140818 Apparently the same as A139813. - _Georg Fischer_, Nov 02 2018 %e A140818 {1}, %e A140818 {2, 2}, %e A140818 {2, 2, 2}, %e A140818 {2, 6, 6, 2}, %e A140818 {2, 8, 6, 8, 2}, %e A140818 {2, 10, 20, 20, 10, 2}, %e A140818 {2, 12, 30, 20, 30, 12, 2}, %e A140818 {2, 14, 42, 70, 70, 42, 14, 2}, %e A140818 {2, 16, 56, 112, 70, 112, 56, 16, 2}, %e A140818 {2, 18, 72, 168, 252, 252, 168, 72, 18, 2}. %t A140818 M[d_, x_, y_] := Sum[Sum[If[n == m, Binomial[d - 1, m - 1], If[n == d - m + 1, Binomial[ d - 1, n - 1], 0]]*x^(n - 1)*y^(m - 1), {n, 1, d}], {m, 1, d}]; %t A140818 Flatten@ Table[CoefficientList[M[d, x, 1], x], {d, 1, 10}] %Y A140818 Cf. A139813, A140685. %K A140818 nonn,tabl,uned %O A140818 1,2 %A A140818 _Roger L. Bagula_ and _Mats Granvik_, Jul 16 2008