This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A140833 #21 Aug 07 2022 14:56:01 %S A140833 0,2,2,6,6,16,16,42,42,110,110,288,288,754,754,1974,1974,5168,5168, %T A140833 13530,13530,35422,35422,92736,92736,242786,242786,635622,635622, %U A140833 1664080,1664080,4356618,4356618,11405774,11405774,29860704,29860704,78176338,78176338 %N A140833 Sum of Fibonacci numbers between F(-n)....F(n), inclusive. %C A140833 a(2n)/a(2n+1) converges to ((((sqrt 5)-1)/2)^2). %H A140833 Matthew House, <a href="/A140833/b140833.txt">Table of n, a(n) for n = 0..4760</a> %H A140833 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (0,3,0,-1). %F A140833 a(2n-1) = a(2n). %F A140833 a(n) = 3*a(n-2) - a(n-4). %F A140833 G.f.: 2x(1+x)/((1-x-x^2)(1+x-x^2)). a(n)=2*A094966(n) = A000045(n+2)-A039834(n-1). - _R. J. Mathar_, Oct 30 2008 %F A140833 a(n) = -a(-1-n) for all n in Z. - _Michael Somos_, Nov 01 2016 %F A140833 a(n) = 2*A000045(ceiling(n/2)*2). - _Alois P. Heinz_, Nov 02 2016 %e A140833 a(3) = 2+(-1)+1+0+1+1+2=6. %e A140833 G.f. = 2*x + 2*x^2 + 6*x^3 + 6*x^4 + 16*x^5 + 16*x^6 + 42*x^7 + ... %p A140833 a:= n-> 2*(<<0|1>, <1|1>>^(ceil(n/2)*2))[1,2]: %p A140833 seq(a(n), n=0..40); # _Alois P. Heinz_, Nov 02 2016 %t A140833 a[ n_] := 2 Fibonacci[ n + Mod[n, 2]]; (* _Michael Somos_, Nov 01 2016 *) %t A140833 LinearRecurrence[{0,3,0,-1},{0,2,2,6},50] (* _Harvey P. Dale_, Aug 07 2022 *) %o A140833 (PARI) {a(n) = 2 * fibonacci(n + n%2)}; /* _Michael Somos_, Nov 01 2016 */ %Y A140833 Cf. A000045, A025169, A001906. %K A140833 nonn,easy %O A140833 0,2 %A A140833 Carey W. Strutz (cwstrutz(AT)excite.com), Jul 18 2008 %E A140833 a(21)-a(22) corrected by _Matthew House_, Nov 01 2016