cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A140969 Prime numbers whose hexadecimal representation uses only the digits A,B,C,D,E,F (and not the decimal digits).

This page as a plain text file.
%I A140969 #23 Aug 31 2025 21:02:26
%S A140969 11,13,173,191,223,239,251,2731,2749,2767,2797,3019,3023,3037,3067,
%T A140969 3259,3307,3323,3499,3517,3533,3547,3581,3583,3803,3821,3823,4013,
%U A140969 4027,4079,4091,4093,43691,43711,43759,43951,43963,43997,44027,44029,44203,44207
%N A140969 Prime numbers whose hexadecimal representation uses only the digits A,B,C,D,E,F (and not the decimal digits).
%H A140969 Charles R Greathouse IV, Nov 16 2009, <a href="/A140969/b140969.txt">Table of n, a(n) for n = 1..10000</a>
%e A140969 11=B 13=D 113=AD 131=BB
%t A140969 Select[Prime@ Range[5000], Min[IntegerDigits[#, 16]] > 9 &] (* _James C. McMahon_, Jul 15 2025 *)
%o A140969 (PARI) mindigit(n,b) = if(n<b, n, min(mindigit(floor(n/b),b),n%b))
%o A140969 isA140969(n) = (isprime(n) && mindigit(n,16) > 9) \\ _Michael B. Porter_, Dec 01 2009
%o A140969 (Python)
%o A140969 from sympy import isprime
%o A140969 from itertools import count, islice, product
%o A140969 def agen(): # generator of terms
%o A140969     yield from (t for d in count(1) for r in product("ABCDEF", repeat=d-1) for e in "BDF" if isprime(t:=int("".join(r)+e, 16)))
%o A140969 print(list(islice(agen(), 44))) # _Michael S. Branicky_, Aug 31 2025
%Y A140969 Cf. A238090.
%K A140969 base,nonn,changed
%O A140969 1,1
%A A140969 _Gil Broussard_, Jul 27 2008
%E A140969 Edited by _N. J. A. Sloane_, Nov 15 2009