This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A140969 #23 Aug 31 2025 21:02:26 %S A140969 11,13,173,191,223,239,251,2731,2749,2767,2797,3019,3023,3037,3067, %T A140969 3259,3307,3323,3499,3517,3533,3547,3581,3583,3803,3821,3823,4013, %U A140969 4027,4079,4091,4093,43691,43711,43759,43951,43963,43997,44027,44029,44203,44207 %N A140969 Prime numbers whose hexadecimal representation uses only the digits A,B,C,D,E,F (and not the decimal digits). %H A140969 Charles R Greathouse IV, Nov 16 2009, <a href="/A140969/b140969.txt">Table of n, a(n) for n = 1..10000</a> %e A140969 11=B 13=D 113=AD 131=BB %t A140969 Select[Prime@ Range[5000], Min[IntegerDigits[#, 16]] > 9 &] (* _James C. McMahon_, Jul 15 2025 *) %o A140969 (PARI) mindigit(n,b) = if(n<b, n, min(mindigit(floor(n/b),b),n%b)) %o A140969 isA140969(n) = (isprime(n) && mindigit(n,16) > 9) \\ _Michael B. Porter_, Dec 01 2009 %o A140969 (Python) %o A140969 from sympy import isprime %o A140969 from itertools import count, islice, product %o A140969 def agen(): # generator of terms %o A140969 yield from (t for d in count(1) for r in product("ABCDEF", repeat=d-1) for e in "BDF" if isprime(t:=int("".join(r)+e, 16))) %o A140969 print(list(islice(agen(), 44))) # _Michael S. Branicky_, Aug 31 2025 %Y A140969 Cf. A238090. %K A140969 base,nonn,changed %O A140969 1,1 %A A140969 _Gil Broussard_, Jul 27 2008 %E A140969 Edited by _N. J. A. Sloane_, Nov 15 2009