cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A140982 If (a_n) is a sequence then let L(a_n)=(b_n) where b_n = a_n^2 - a_{n-1} a_{n+1}. The given sequence is the rows of the triangle obtained by computing L^2(binomial(n,k)).

Original entry on oeis.org

1, 3, 1, 6, 16, 1, 10, 100, 50, 1, 15, 400, 750, 120, 1, 21, 1225, 6125, 3675, 245, 1, 28, 3136, 34300, 54880, 13720, 448, 1, 36, 7056, 148176, 518616, 345744, 42336, 756, 1, 45, 14400, 529200, 3556224, 5186160, 1693440, 113400, 1200, 1, 55, 27225, 1633500
Offset: 3

Views

Author

Bruce E. Sagan, Jul 28 2008

Keywords

Comments

L(binomial(n,k)) gives the Narayana numbers, A001263.

Crossrefs

Cf. A001263.

Programs

  • Mathematica
    a[n_, k_] := 2 * Binomial[n, k]^2 * Binomial[n, k - 1] * Binomial[n, k - 2] / ((n - 1) n^2); Table[ a[n, k], {n, 2, 11}, {k, 2, n}] // Flatten (* Robert G. Wilson v, Aug 03 2008 *)

Formula

a(n,k) = binomial(n,k)^2 * binomial(n,k-1) * binomial(n,k-2) / (n*binomial(n,2)).

Extensions

More terms from Robert G. Wilson v, Aug 03 2008