A141019 a(n) is the largest number in the n-th row of triangle A140996.
1, 1, 2, 4, 8, 16, 31, 60, 116, 224, 432, 833, 1606, 3096, 5968, 11504, 22175, 42744, 84752, 169880, 340013, 679604, 1356641, 2704954, 5387340, 10718620, 21304973, 42308331, 83945336, 166423276, 329683867, 652627294, 1291020297, 2552209710, 5042305104
Offset: 0
Keywords
Examples
The largest number of 1 is a(0) = 1. The largest number of 1 1 is a(1) = 1. The largest number of 1 2 1 is a(2) = 2. The largest number of 1 4 2 1 is a(3) = 4. The largest number of 1 8 4 2 1 is a(4) = 8. The largest number of 1 16 8 4 2 1 is a(5) = 16. The largest number of 1 31 17 8 4 2 1 is a(6) = 31.
Links
- Juri-Stepan Gerasimov, Stepan's triangles and Pascal's triangle are connected by the recurrence relation ...
Programs
-
Maple
A140996 := proc(n,k) option remember ; if k<0 or k>n then 0 ; elif k=0 or k=n then 1 ; elif k=n-1 then 2 ; elif k=n-2 then 4 ; elif k=n-3 then 8 ; else procname(n-1,k)+procname(n-2,k) +procname(n-3,k)+procname(n-4,k)+procname(n-4,k-1) ; fi; end: A141019 := proc(n) max(seq(A140996(n,k),k=0..n)) ; end: for n from 0 to 50 do printf("%d,",A141019(n)) ; od: # R. J. Mathar, Sep 19 2008
-
Mathematica
T[n_, k_] := T[n, k] = Which[k < 0 || k > n, 0, k == 0 || k == n, 1, k == n - 1, 2, k == n-2, 4, k == n-3, 8, True, T[n-1, k] + T[n-2, k] + T[n-3, k] + T[n-4, k] + T[n-4, k-1]]; a[n_] := Table[T[n, k], {k, 0, n}] // Max; Table[a[n], {n, 0, 34}] (* Jean-François Alcover, Jan 28 2024, after R. J. Mathar *)
Formula
a(n) = max_{k=0..n} A140996(n,k).
Extensions
Partially edited by N. J. A. Sloane, Jul 18 2008
Simplified definition and extended by R. J. Mathar, Sep 19 2008
Comments