A141029 Nearest integer to the space diagonal of the smallest (measured by the longest edge) primitive (gcd(a,b,c)=1) Euler bricks (a, b, c, sqrt(a^2 + b^2), sqrt(b^2 + c^2), sqrt(a^2 + c^2) are integers). If the space diagonal is an integer then the Euler brick is called a "perfect cuboid". There are no known perfect cuboids.
271, 444, 855, 737, 840, 1887, 1893, 2537, 2897, 3961, 3816, 6596, 8595, 6383, 9260, 8327, 9525, 9405, 13454, 16525, 12122, 12167, 15336, 14721, 22943, 20988, 22444, 25844, 28443, 26336, 30382, 29714, 35079, 31094, 31700, 38989, 32965
Offset: 1
Keywords
Examples
a(1)=271 because sqrt(240^2 + 117^2 + 44^2) = 270.60, where 240 is the longest edge, 117 the intermediate edge and 44 the smallest edge, of the smallest primitive Euler brick.
Links
- Eric Weisstein's World of Mathematics, Euler Brick.