This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A141060 #31 Jul 04 2025 18:41:37 %S A141060 3,43,683,10923,174763,2796203,44739243,715827883,11453246123, %T A141060 183251937963,2932031007403,46912496118443,750599937895083, %U A141060 12009599006321323,192153584101141163,3074457345618258603,49191317529892137643 %N A141060 Fourth quadrisection of Jacobsthal numbers A001045: a(n)=16a(n-1)-5. %C A141060 Jacobsthal numbers ending with the decimal digit 3. - _Jianing Song_, Aug 30 2022 %H A141060 Vincenzo Librandi, <a href="/A141060/b141060.txt">Table of n, a(n) for n = 0..200</a> %H A141060 <a href="/index/Rec">Index entries for linear recurrences with constant coefficients</a>, signature (17,-16). %F A141060 a(n) = A139792(n) + A013776(n). %F A141060 a(n+1) - a(n) = 10*A013709(n) = 40*A001025(n). %F A141060 G.f.: (3-8*x)/((1-x)*(1-16*x)). [_Colin Barker_, Apr 05 2012] %F A141060 a(0)=3, a(1)=43, a(n)=17*a(n-1)-16*a(n-2). - _Harvey P. Dale_, Mar 16 2015 %F A141060 From _Jianing Song_, Aug 30 2022: (Start) %F A141060 a(n) = A001045(4*n+3). %F A141060 a(n) = 10*A141032(n) + 3 = 20*A098704(n+1) + 1 = 40*A131865(n-1) + 1 for n >= 1. (End) %t A141060 LinearRecurrence[{17,-16},{3,43},30] (* _Harvey P. Dale_, Mar 16 2015 *) %o A141060 (Magma) [(1/3)*(1+8*16^n): n in [0..25]]; // _Vincenzo Librandi_, May 25 2011 %o A141060 (PARI) a(n)=8*16^n\3+1 \\ _Charles R Greathouse IV_, May 25 2011 %o A141060 (Python) %o A141060 def A141060(n): return ((1<<(n<<2)+3)|1)//3 # _Chai Wah Wu_, Apr 18 2025 %Y A141060 The other quadrisections of A001045 are A195156 (first), A139792 (second), and A144864 (third). %K A141060 nonn,easy,less %O A141060 0,1 %A A141060 _Paul Curtz_, Jul 30 2008