A141112 Primes of the form 2*x^2+5*x*y-5*y^2 (as well as of the form 7*x^2+11*x*y+2*y^2).
2, 5, 7, 13, 37, 47, 67, 73, 83, 97, 137, 163, 167, 193, 197, 223, 227, 293, 307, 317, 353, 383, 397, 457, 463, 487, 557, 577, 587, 593, 613, 617, 643, 683, 733, 743, 773, 787, 827, 853, 863, 877, 947, 967, 977, 983, 1033, 1087, 1097, 1103, 1123, 1163, 1217, 1237, 1307, 1367, 1373
Offset: 1
Keywords
Examples
a(4)=37 because we can write 37=2*6^2+5*6*7-5*7^2 (or 37=7*1^2+11*1*2+2*2^2)
References
- Z. I. Borevich and I. R. Shafarevich, Number Theory. Academic Press, NY, 1966.
- D. B. Zagier, Zetafunktionen und quadratische Körper, Springer, 1981.
Links
- Juan Arias-de-Reyna, Table of n, a(n) for n = 1..10000
- Peter Luschny, Binary Quadratic Forms
- N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
Programs
-
Mathematica
Select[Prime[Range[250]], # == 5 || # == 13 || MatchQ[Mod[#, 65], Alternatives[2, 7, 8, 18, 28, 32, 33, 37, 47, 57, 58, 63]]&] (* Jean-François Alcover, Oct 28 2016 *)
-
Sage
# uses[binaryQF] # The function binaryQF is defined in the link 'Binary Quadratic Forms'. Q = binaryQF([2, 5, -5]) print(Q.represented_positives(1373, 'prime')) # Peter Luschny, Aug 12 2021
Comments