cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A141112 Primes of the form 2*x^2+5*x*y-5*y^2 (as well as of the form 7*x^2+11*x*y+2*y^2).

Original entry on oeis.org

2, 5, 7, 13, 37, 47, 67, 73, 83, 97, 137, 163, 167, 193, 197, 223, 227, 293, 307, 317, 353, 383, 397, 457, 463, 487, 557, 577, 587, 593, 613, 617, 643, 683, 733, 743, 773, 787, 827, 853, 863, 877, 947, 967, 977, 983, 1033, 1087, 1097, 1103, 1123, 1163, 1217, 1237, 1307, 1367, 1373
Offset: 1

Views

Author

Laura Caballero Fernandez, Lourdes Calvo Moguer, Maria Josefa Cano Marquez, Oscar Jesus Falcon Ganfornina and Sergio Garrido Morales (oscfalgan(AT)yahoo.es), Jun 04 2008, Jun 05 2008

Keywords

Comments

Both have discriminant = 65. Class = 2. Binary quadratic forms a*x^2+b*x*y+c*y^2 have discriminant d=b^2-4ac and gcd(a,b,c)=1.

Examples

			a(4)=37 because we can write 37=2*6^2+5*6*7-5*7^2 (or 37=7*1^2+11*1*2+2*2^2)
		

References

  • Z. I. Borevich and I. R. Shafarevich, Number Theory. Academic Press, NY, 1966.
  • D. B. Zagier, Zetafunktionen und quadratische Körper, Springer, 1981.

Crossrefs

Cf. A141111.
Subsequence of A243171.

Programs

  • Mathematica
    Select[Prime[Range[250]], # == 5 || # == 13 || MatchQ[Mod[#, 65], Alternatives[2, 7, 8, 18, 28, 32, 33, 37, 47, 57, 58, 63]]&] (* Jean-François Alcover, Oct 28 2016 *)
  • Sage
    # uses[binaryQF]
    # The function binaryQF is defined in the link 'Binary Quadratic Forms'.
    Q = binaryQF([2, 5, -5])
    print(Q.represented_positives(1373, 'prime')) # Peter Luschny, Aug 12 2021