This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A141130 #16 Aug 06 2024 01:53:35 %S A141130 1,2,150,4210,12496,43206,83046,161092,202966,305068,498936,633160, %T A141130 906426,1125418,1248412,1460566,1808478,2264752,2339136,3026112, %U A141130 3331266,3501748,4015168,4529520,5049852,5806336,6448536,6792726,7214610 %N A141130 a(n) = prime(prime(prime(prime(prime(A028815(n) - 1) - 1) - 1) - 1) - 1) - 1. %H A141130 G. C. Greubel, <a href="/A141130/b141130.txt">Table of n, a(n) for n = 0..10000</a> %F A141130 a(n) = prime(prime(prime(prime(prime(prime(n)) - 1) - 1) - 1) - 1) - 1, with a(0) = 1. - _G. C. Greubel_, Aug 05 2024 %t A141130 A141130[n_]:= With[{p=Prime}, If[n==0, 1, p[p[p[p[p[p[n]]-1]-1]-1]-1]-1 ]]; %t A141130 Table[A141130[n], {n,0,60}] (* _G. C. Greubel_, Aug 05 2024 *) %o A141130 (Magma) %o A141130 p:=NthPrime; %o A141130 A141130:= func< n | n eq 0 select 1 else p(p(p(p(p(p(n))-1)-1)-1)-1)-1 >; %o A141130 [A141130(n): n in [0..50]]; // _G. C. Greubel_, Aug 05 2024 %o A141130 (SageMath) %o A141130 p=nth_prime %o A141130 def A141130(n): return 1 if n==0 else p(p(p(p(p(p(n))-1)-1)-1)-1)-1 %o A141130 [A141130(n) for n in range(51)] # _G. C. Greubel_, Aug 05 2024 %Y A141130 Cf. A000040, A028815, A141132, A141133, A141136, A141138. %K A141130 nonn %O A141130 0,2 %A A141130 _Juri-Stepan Gerasimov_, Jul 31 2008 %E A141130 More terms from _D. S. McNeil_, Mar 21 2009 %E A141130 Offset changed by _G. C. Greubel_, Aug 05 2024