This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A141132 #18 Aug 06 2024 01:53:43 %S A141132 1,2,36,576,1492,4512,8110,14778,18222,26416,41452,51576,71740,87552, %T A141132 96352,111372,135660,167106,172152,218550,238990,250252,284148,317856, %U A141132 351706,400408,441478,463398,490246,505780,527280,643990,679036,718182 %N A141132 a(n) = prime(prime(prime(prime(A028815(n) - 1) - 1) - 1) - 1) - 1. %H A141132 G. C. Greubel, <a href="/A141132/b141132.txt">Table of n, a(n) for n = 0..10000</a> %F A141132 a(n) = prime(prime(prime(prime(prime(n)) - 1) - 1) - 1) - 1, with a(0) = 1. - _G. C. Greubel_, Aug 05 2024 %t A141132 A141132[n_]:= With[{p=Prime}, If[n==0, 1, p[p[p[p[p[n]]-1]-1]-1]-1 ]]; %t A141132 Table[A141132[n], {n, 0, 60}] (* _G. C. Greubel_, Aug 05 2024 *) %o A141132 (Magma) %o A141132 p:=NthPrime; %o A141132 A141132:= func< n | n eq 0 select 1 else p(p(p(p(p(n))-1)-1)-1)-1 >; %o A141132 [A141132(n): n in [0..50]]; // _G. C. Greubel_, Aug 05 2024 %o A141132 (SageMath) %o A141132 p=nth_prime %o A141132 def A141132(n): return 1 if n==0 else p(p(p(p(p(n))-1)-1)-1)-1 %o A141132 [A141132(n) for n in range(51)] # _G. C. Greubel_, Aug 05 2024 %Y A141132 Cf. A000040, A028815, A141130, A141133, A141136, A141138. %K A141132 nonn %O A141132 0,2 %A A141132 _Juri-Stepan Gerasimov_, Jul 31 2008 %E A141132 Extended by _D. S. McNeil_, Mar 21 2009 %E A141132 Offset changed by _G. C. Greubel_, Aug 05 2024