This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A141133 #17 Aug 05 2024 15:48:43 %S A141133 1,2,12,106,238,612,1020,1732,2088,2902,4336,5278,7102,8500,9282, %T A141133 10566,12640,15268,15678,19488,21142,22062,24766,27430,30108,33892, %U A141133 37056,38706,40786,41980,43626,52360,54982,57900,60496,66808,68398,72670 %N A141133 a(n) = prime(prime(prime(A028815(n) - 1) - 1) - 1) - 1. %H A141133 G. C. Greubel, <a href="/A141133/b141133.txt">Table of n, a(n) for n = 0..10000</a> %F A141133 a(n) = prime(prime(prime(prime(n)) - 1) - 1) - 1, with a(0) = 1. - _G. C. Greubel_, Aug 05 2024 %t A141133 A141133[n_]:= With[{p=Prime}, If[n==0, 1, p[p[p[p[n]]-1]-1]-1 ]]; %t A141133 Table[A141133[n], {n,0,60}] (* _G. C. Greubel_, Aug 05 2024 *) %o A141133 (Magma) %o A141133 p:=NthPrime; %o A141133 A141133:= func< n | n eq 0 select 1 else p(p(p(p(n))-1)-1) -1 >; %o A141133 [A141133(n): n in [0..50]]; // _G. C. Greubel_, Aug 05 2024 %o A141133 (SageMath) %o A141133 p=nth_prime %o A141133 def A141133(n): return 1 if n==0 else p(p(p(p(n))-1)-1)-1 %o A141133 [A141133(n) for n in range(51)] # _G. C. Greubel_, Aug 05 2024 %Y A141133 Cf. A000040, A028815, A141130, A141132, A141136, A141138. %K A141133 nonn %O A141133 0,2 %A A141133 _Juri-Stepan Gerasimov_, Jul 31 2008 %E A141133 Corrected and extended by _D. S. McNeil_, Mar 21 2009 %E A141133 Offset changed by _G. C. Greubel_, Aug 05 2024