This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A141136 #15 Aug 05 2024 15:42:07 %S A141136 1,2,6,28,52,112,172,270,316,420,592,700,910,1060,1150,1290,1510,1782, %T A141136 1830,2212,2376,2472,2740,2998,3256,3630,3930,4078,4270,4390,4546, %U A141136 5350,5590,5866,6100,6658,6802,7186,7602,7828,8218,8520,8712,9310,9438,9732 %N A141136 a(n) = prime(prime(A028815(n) - 1) - 1) - 1. %H A141136 G. C. Greubel, <a href="/A141136/b141136.txt">Table of n, a(n) for n = 0..10000</a> %F A141136 a(n) = A000040(A000040(A000040(n)) - 1) - 1, with a(0) = 1. - _G. C. Greubel_, Aug 05 2024 %t A141136 A141136[n_]:= With[{p=Prime}, If[n==0, 1, p[p[p[n]]-1]-1]]; %t A141136 Table[A141136[n], {n,0,60}] (* _G. C. Greubel_, Aug 05 2024 *) %o A141136 (Magma) %o A141136 p:=NthPrime; %o A141136 A141136:= func< n | n eq 0 select 1 else p(p(p(n))-1) -1 >; %o A141136 [A141136(n): n in [0..50]]; // _G. C. Greubel_, Aug 05 2024 %o A141136 (SageMath) %o A141136 p=nth_prime %o A141136 def A141136(n): return 1 if n==0 else p(p(p(n))-1)-1 %o A141136 [A141136(n) for n in range(51)] # _G. C. Greubel_, Aug 05 2024 %Y A141136 Cf. A000040, A028815, A141130, A141132, A141133, A141138. %K A141136 nonn %O A141136 0,2 %A A141136 _Juri-Stepan Gerasimov_, Jul 31 2008 %E A141136 Corrected and extended by _D. S. McNeil_, Mar 21 2009 %E A141136 Offset changed by _G. C. Greubel_, Aug 05 2024