A141161 Primes of the form 4*x^2+6*x*y-7*y^2.
3, 7, 11, 41, 47, 53, 71, 73, 83, 101, 127, 149, 157, 173, 181, 197, 211, 223, 229, 263, 271, 307, 337, 359, 373, 379, 397, 419, 433, 443, 509, 521, 571, 593, 599, 613, 617, 619, 641, 659, 673, 677, 719, 733, 739, 743, 751, 761, 773, 787, 811, 821, 887, 937
Offset: 1
Keywords
Examples
a(8)=73 because we can write 73= 4*4^2+6*4*3-7*3^2.
References
- Z. I. Borevich and I. R. Shafarevich, Number Theory.
Links
- Juan Arias-de-Reyna, Table of n, a(n) for n = 1..10000
- Peter Luschny, Binary Quadratic Forms
- N. J. A. Sloane et al., Binary Quadratic Forms and OEIS: Index to related sequences, programs, references. OEIS wiki, June 2014.
- D. B. Zagier, Zetafunktionen und quadratische Körper, Springer, 1981.
Crossrefs
Programs
-
Mathematica
q := 4*x^2 + 6*x*y - 7*y^2; pmax = 1000; xmax = 100; ymin = -xmax; ymax = xmax; k = 1; prms0 = {}; prms = {2}; While[prms != prms0, xx = yy = {}; prms0 = prms; prms = Reap[Do[p = q; If[2 <= p <= pmax && PrimeQ[p], AppendTo[xx, x]; AppendTo[yy, y]; Sow[p]], {x, 1, k*xmax}, {y, k*ymin, k*ymax}]][[2, 1]] // Union; xmax = Max[xx]; ymin = Min[yy]; ymax = Max[yy]; k++; Print["k = ", k, " xmax = ", xmax, " ymin = ", ymin, " ymax = ", ymax ]]; A141161 = prms (* Jean-François Alcover, Oct 26 2016 *)
-
Sage
# The function binaryQF is defined in the link 'Binary Quadratic Forms'. Q = binaryQF([4, 6, -7]) Q.represented_positives(937, 'prime') # Peter Luschny, Oct 26 2016
Comments