This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A141164 #25 Apr 06 2021 11:03:24 %S A141164 7,14,15,21,23,28,30,31,35,39,42,45,46,47,49,55,56,60,62,69,70,71,75, %T A141164 77,78,79,84,87,90,91,92,93,94,95,98,103,110,111,112,115,117,120,124, %U A141164 127,133,138,140,141,142,143,147,150,151,154,155,156,158,159,167,168,174,180,182,183,184,186,188,190,191,196,199 %N A141164 Numbers having exactly 1 divisor of the form 8*k + 7. %H A141164 Reinhard Zumkeller, <a href="/A141164/b141164.txt">Table of n, a(n) for n = 1..10000</a> %F A141164 A188172(a(n)) = 1. %e A141164 a(1) = A188226(1) = 7. %t A141164 okQ[n_] := Length[Select[Divisors[n] - 7, Mod[#, 8] == 0 &]] == 1; Select[Range[200], okQ] %o A141164 (Haskell) %o A141164 import Data.List (elemIndices) %o A141164 a141164 n = a141164_list !! (n-1) %o A141164 a141164_list = map succ $ elemIndices 1 $ map a188172 [1..] %o A141164 (PARI) res(n, a, b) = sumdiv(n, d, (d%a) == b) %o A141164 isA141164(n) = (res(n, 8, 7) == 1) \\ _Jianing Song_, Apr 06 2021 %Y A141164 Numbers having m divisors of the form 8*k + i: A343107 (m=1, i=1), A343108 (m=0, i=3), A343109 (m=0, i=5), A343110 (m=0, i=7), A343111 (m=2, i=1), A343112 (m=1, i=3), A343113 (m=1, i=5), this sequence (m=1, i=7). %Y A141164 Indices of 1 in A188172. %Y A141164 A007522 is a subsequence. %Y A141164 Cf. A004771. %K A141164 nonn %O A141164 1,1 %A A141164 _Reinhard Zumkeller_, Mar 26 2011