cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A141166 Primes of the form x^2+15*x*y-y^2.

This page as a plain text file.
%I A141166 #30 Feb 17 2022 11:36:25
%S A141166 37,53,173,193,229,241,347,359,383,439,443,449,461,503,509,541,593,
%T A141166 607,617,619,643,691,907,967,977,1019,1051,1063,1097,1109,1249,1277,
%U A141166 1291,1303,1321,1399,1429,1583,1667,1741,1783,1993,1997,2003,2087,2137,2143,2333,2347,2351
%N A141166 Primes of the form x^2+15*x*y-y^2.
%C A141166 Discriminant = 229. Class = 3. Binary quadratic forms a*x^2+b*x*y+c*y^2 have discriminant d = b^2-4ac. They can represent primes only if gcd(a,b,c)=1. [Edited by _M. F. Hasler_, Jan 27 2016]
%C A141166 Appears to be the complement of A141165 in A268155, primes that are squares mod 229. - _M. F. Hasler_, Jan 27 2016
%D A141166 Z. I. Borevich and I. R. Shafarevich, Number Theory
%H A141166 Juan Arias-de-Reyna, <a href="/A141166/b141166.txt">Table of n, a(n) for n = 1..10000</a>
%H A141166 N. J. A. Sloane et al., <a href="https://oeis.org/wiki/Binary_Quadratic_Forms_and_OEIS">Binary Quadratic Forms and OEIS</a>: Index to related sequences, programs, references. OEIS wiki, June 2014.
%H A141166 D. B. Zagier, <a href="https://doi.org/10.1007/978-3-642-61829-1">Zetafunktionen und quadratische Körper</a>, Springer, 1981.
%e A141166 a(2)=53 because we can write 53= 3^2+15*3*1-1^2
%t A141166 lim = 100; Rest@ Union@ Abs@ Flatten@ Table[x^2 + 15 x y - y^2, {x, lim}, {y, lim}] /. n_ /; CompositeQ@ n -> Nothing (* _Michael De Vlieger_, Jan 27 2016 *)
%o A141166 (PARI) is_A141166(p)=qfbsolve(Qfb(1,15,-1),p) \\ Returns nonzero (actually, a solution [x,y]) iff p is a member of the sequence. For efficiency it is assumed that p is prime. Example usage: select(is_A141166,primes(500)) - _M. F. Hasler_, Jan 27 2016
%Y A141166 Cf. A038872 (d=5). A038873 (d=8). A068228, A141123 (d=12). A038883 (d=13). A038889 (d=17). A141111, A141112 (d=65). A141165 (d=229).
%Y A141166 For a list of sequences giving numbers and/or primes represented by binary quadratic forms, see the "Binary Quadratic Forms and OEIS" link.
%K A141166 nonn
%O A141166 1,1
%A A141166 Laura Caballero Fernandez, Lourdes Calvo Moguer, Maria Josefa Cano Marquez, Oscar Jesus Falcon Ganfornina and Sergio Garrido Morales (sergarmor(AT)yahoo.es), Jun 12 2008