This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A141168 #19 Feb 17 2022 11:36:45 %S A141168 2,11,13,17,23,29,31,59,73,79,89,137,139,173,199,211,223,239,283,293, %T A141168 307,317,349,373,379,397,401,433,457,479,491,503,523,563,571,593,613, %U A141168 647,673,683,701,709,719,727,769,773,787,797,829,839,887,911,967 %N A141168 Primes of the form 4*x^2+9*x*y-11*y^2. %C A141168 Discriminant = 257. Class = 3. Binary quadratic forms a*x^2+b*x*y+c*y^2 have discriminant d=b^2-4ac and gcd(a,b,c)=1 %C A141168 Also primes represented by the improperly equivalent form 11*x^2+9*x*y-4*y^2. - _Juan Arias-de-Reyna_, Mar 18 2011 %D A141168 Z. I. Borevich and I. R. Shafarevich, Number Theory %H A141168 Juan Arias-de-Reyna, <a href="/A141168/b141168.txt">Table of n, a(n) for n = 1..10000</a> %H A141168 N. J. A. Sloane et al., <a href="https://oeis.org/wiki/Binary_Quadratic_Forms_and_OEIS">Binary Quadratic Forms and OEIS</a>: Index to related sequences, programs, references. OEIS wiki, June 2014. %H A141168 D. B. Zagier, <a href="https://doi.org/10.1007/978-3-642-61829-1">Zetafunktionen und quadratische Körper</a>, Springer, 1981. %e A141168 a(5)=23 because we can write 23= 4*2^2+9*2*1-11*1^2 %Y A141168 Cf. A038872 (d=5). A038873 (d=8). A068228, A141123 (d=12). A038883 (d=13). A038889 (d=17). A141111, A141112 (d=65). A141167 (d=257). %Y A141168 For a list of sequences giving numbers and/or primes represented by binary quadratic forms, see the "Binary Quadratic Forms and OEIS" link. %K A141168 nonn %O A141168 1,1 %A A141168 Laura Caballero Fernandez, Lourdes Calvo Moguer, Maria Josefa Cano Marquez, Oscar Jesus Falcon Ganfornina and Sergio Garrido Morales (sergarmor(AT)yahoo.es), Jun 12 2008