cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A141179 Primes of the form 3*x^2 + 2*x*y - 3*y^2 (as well as of the form 3*x^2 + 8*x*y + 2*y^2).

Original entry on oeis.org

2, 3, 5, 13, 37, 43, 53, 67, 83, 107, 157, 163, 173, 197, 227, 277, 283, 293, 307, 317, 347, 373, 397, 443, 467, 523, 547, 557, 563, 587, 613, 643, 653, 677, 683, 733, 757, 773, 787, 797, 827, 853, 877, 883, 907, 947, 997, 1013, 1093, 1117, 1123, 1163, 1187, 1213, 1237, 1277
Offset: 1

Views

Author

Laura Caballero Fernandez, Lourdes Calvo Moguer, Maria Josefa Cano Marquez, Oscar Jesus Falcon Ganfornina, and Sergio Garrido Morales (oscfalgan(AT)yahoo.es), Jun 12 2008

Keywords

Comments

Discriminant = 40. Class = 2. Binary quadratic forms a*x^2 + b*x*y + c*y^2 have discriminant d = b^2 - 4ac.
For each term p > 5, p^2 == 13^2 (mod 240), and p is of the form 120*k +- b, where b = (13, 37, 43, 53). - Boyd Blundell, Jul 05 2021

Examples

			13 is a term because we can write 13 = 3*2^2 + 2*2*1 - 3*1^2 (or 13 = 3*1^2 + 8*1*1 + 2*1^2).
		

References

  • Z. I. Borevich and I. R. Shafarevich, Number Theory.

Crossrefs

Cf. A141180 (d=40). A038872 (d=5). A038873 (d=8). A068228, A141123 (d=12). A038883 (d=13). A038889 (d=17). A141111, A141112 (d=65).
Cf. also A243165.
For a list of sequences giving numbers and/or primes represented by binary quadratic forms, see the "Binary Quadratic Forms and OEIS" link.

Programs

  • Mathematica
    Select[Prime[Range[250]], # == 2 || # == 5 || MatchQ[Mod[#, 40], Alternatives[3, 13, 27, 37]]&] (* Jean-François Alcover, Oct 28 2016 *)
  • Sage
    # uses[binaryQF]
    # The function binaryQF is defined in the link 'Binary Quadratic Forms'.
    Q = binaryQF([3, 2, -3])
    print(Q.represented_positives(1277, 'prime')) # Peter Luschny, Aug 12 2021