A141179 Primes of the form 3*x^2 + 2*x*y - 3*y^2 (as well as of the form 3*x^2 + 8*x*y + 2*y^2).
2, 3, 5, 13, 37, 43, 53, 67, 83, 107, 157, 163, 173, 197, 227, 277, 283, 293, 307, 317, 347, 373, 397, 443, 467, 523, 547, 557, 563, 587, 613, 643, 653, 677, 683, 733, 757, 773, 787, 797, 827, 853, 877, 883, 907, 947, 997, 1013, 1093, 1117, 1123, 1163, 1187, 1213, 1237, 1277
Offset: 1
Keywords
Examples
13 is a term because we can write 13 = 3*2^2 + 2*2*1 - 3*1^2 (or 13 = 3*1^2 + 8*1*1 + 2*1^2).
References
- Z. I. Borevich and I. R. Shafarevich, Number Theory.
Links
- Juan Arias-de-Reyna, Table of n, a(n) for n = 1..10000
- Peter Luschny, Binary Quadratic Forms
- N. J. A. Sloane et al., Binary Quadratic Forms and OEIS: Index to related sequences, programs, references. OEIS wiki, June 2014.
- D. B. Zagier, Zetafunktionen und quadratische Körper, Springer, 1981.
Crossrefs
Programs
-
Mathematica
Select[Prime[Range[250]], # == 2 || # == 5 || MatchQ[Mod[#, 40], Alternatives[3, 13, 27, 37]]&] (* Jean-François Alcover, Oct 28 2016 *)
-
Sage
# uses[binaryQF] # The function binaryQF is defined in the link 'Binary Quadratic Forms'. Q = binaryQF([3, 2, -3]) print(Q.represented_positives(1277, 'prime')) # Peter Luschny, Aug 12 2021
Comments