This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A141182 #37 Feb 18 2022 15:31:08 %S A141182 5,37,53,89,97,113,137,157,181,229,257,269,313,317,353,389,397,401, %T A141182 421,433,449,509,521,577,617,641,653,661,709,757,773,797,829,881,929, %U A141182 977,1013,1021,1049,1061,1093,1109,1153,1181,1193,1213,1237,1277,1301,1321,1373 %N A141182 Primes of the form x^2+6*x*y-2*y^2 (as well as of the form 5*x^2+8*x*y+y^2). %C A141182 Discriminant = 44. Class = 2. Binary quadratic forms a*x^2 + b*x*y + c*y^2 have discriminant d = b^2 - 4ac. %C A141182 Also, primes of the form u^2 - 11v^2. The transformation {u, v} = {x+3y, y} yields the form in the title. - _Tito Piezas III_, Dec 28 2008 %C A141182 Also primes p == 1 (mod 4) and == 1, 3, 4, 5 or 9 (mod 11). - _Juan Arias-de-Reyna_, Mar 20 2011. %D A141182 Z. I. Borevich and I. R. Shafarevich, Number Theory. %H A141182 Juan Arias-de-Reyna, <a href="/A141182/b141182.txt">Table of n, a(n) for n = 1..10000</a> %H A141182 N. J. A. Sloane et al., <a href="/wiki/Binary_Quadratic_Forms_and_OEIS">Binary Quadratic Forms and OEIS</a>: Index to related sequences, programs, references. OEIS wiki, June 2014. %H A141182 D. B. Zagier, <a href="https://doi.org/10.1007/978-3-642-61829-1">Zetafunktionen und quadratische Körper</a>, Springer, 1981. %e A141182 a(3)=53 because we can write 53=5^2+6*5*1-2*1^2 (or 53=5*1^2+8*1*4+4^2) %t A141182 Select[Prime[Range[250]], MatchQ[Mod[#, 44], Alternatives[1, 5, 9, 25, 37]] &] (* _Jean-François Alcover_, Oct 28 2016 *) %o A141182 (PARI) isA141182(p) = p%4==1 & issquare(Mod(p,11)) \\ _M. F. Hasler_, Mar 20 2011 %Y A141182 Cf. A141183 (d=44), A038872 (d=5). A038873 (d=8). A068228, A141123 (d=12). A038883 (d=13). A038889 (d=17): A141111, A141112 (d=65). %Y A141182 Cf. also A243166. %Y A141182 For a list of sequences giving numbers and/or primes represented by binary quadratic forms, see the "Binary Quadratic Forms and OEIS" link. %K A141182 nonn %O A141182 1,1 %A A141182 Laura Caballero Fernandez, Lourdes Calvo Moguer, Maria Josefa Cano Marquez, Oscar Jesus Falcon Ganfornina and Sergio Garrido Morales (lourdescm84(AT)hotmail.com), Jun 12 2008