cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A144122 (1, 2, 3, 2^2, 5, 2*3, 7, 2^3, 3^2, 2*5, 11, 2^2*3, 13, ...) becomes (0, 1, 4, 6^8, 9, 10*12, 14, 15^16, 18^20, 21*22, 24, 25^26*27, 28, ...).

Original entry on oeis.org

0, 1, 4, 1679616, 9, 120, 14, 6568408355712890625, 12748236216396078174437376, 462, 24, 59952043329758453182876110076904296875, 28, 960, 1122, 38587762477395204358312525169472792185842990875244140625, 38
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Nov 17 2008

Keywords

Examples

			6^8 = 1679616 = a(4),
9 = a(5),
10*12 = 120 = a(6),
etc.
		

Crossrefs

Programs

  • Maple
    A141468 := proc(n) if n <=2 then n-1; else for a from procname(n-1)+1 do if not isprime(a) then return a; end if; end do: end if; end proc:
    A144122 := proc(nmax) local a, ifs, n, p, c ; printf("0,1,") ; c := 3 ; for n from 3 to nmax do ifs := ifactors(n)[2] ; a := 1; for p in ifs do if op(2,p) > 1 then a := a*A141468(c)^A141468(c+1) ; c := c+2 ; else a := a*A141468(c) ; c := c+1 ; fi; od: printf("%d,",a) ; od: return ; end: A144122(20) ; # R. J. Mathar, Apr 28 2010

Extensions

More terms from R. J. Mathar, Apr 28 2010

A144158 (1=1, 2=2, 3=3, 4=2^2, 5=5, 6=2*3, 7=7, 8=2^3, 9=3^2, 10=2*5, 11=11, 12=2^2*3, 13=13, ...) becomes (1*1*2, 2*3*3, 4*2*2, 5*5*6, 2*3*7, 7*8*2, 3*9*3, 2*10*2, 5*11*11, 12*2*2, 3*13*13, ...).

Original entry on oeis.org

2, 18, 16, 150, 42, 112, 81, 40, 605, 48, 507, 196, 225, 128, 5202, 12, 7220, 20, 441, 484, 12696, 18, 250, 676, 243, 112, 5887, 180, 4805, 320, 1089, 1156, 1225, 144, 222, 2812, 2223, 1040, 615, 3444, 903, 3784, 990, 30, 2116, 106032, 24, 686, 500, 306
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Nov 17 2008

Keywords

Examples

			3*13*13 = 507 = a(11),
14*2*7 = 196 = a(12),
15*3*5 = 225 = a(13),
16*2*4 = 128 = a(14),
17*17*18 = 5202 = a(15),
2*3*2 = 12 = a(16),
19*19*20 = 7220 = a(17),
etc.
		

Crossrefs

Programs

  • Maple
    pflat := proc(nmax) local a, ifs, n, p, c ; a := [1,1] ; for n from 2 to nmax do a := [op(a),n] ; ifs := ifactors(n)[2] ; for p in ifs do a := [op(a),op(1,p)] ; if op(2,p) > 1 then a := [op(a),op(2,p)] ; fi; od: od: a ; end: L := pflat(300) ; for n from 1 to nops(L)-3 by 3 do printf("%d,", op(n,L)*op(n+1,L)*op(n+2,L) ) ; end do: # R. J. Mathar, Apr 29 2010

Extensions

a(37) and terms after a(46) corrected by R. J. Mathar, Apr 29 2010
Showing 1-2 of 2 results.