cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A141191 Primes of the form -2*x^2+4*x*y+5*y^2 (as well as of the form 10*x^2+16*x*y+5*y^2).

Original entry on oeis.org

5, 7, 13, 31, 47, 61, 101, 103, 157, 167, 173, 181, 199, 223, 229, 269, 271, 293, 311, 349, 367, 383, 397, 439, 461, 479, 503, 509, 607, 647, 661, 677, 719, 727, 733, 773, 797, 829, 839, 853, 887, 941, 983, 997, 1013, 1021, 1039, 1063, 1069, 1109, 1151, 1181
Offset: 1

Views

Author

Laura Caballero Fernandez,Lourdes Calvo Moguer, Maria Josefa Cano Marquez, Oscar Jesus Falcon Ganfornina and Sergio Garrido Morales (lourdescm84(AT)hotmail.com), Jun 12 2008

Keywords

Comments

Discriminant = 56. Class = 2. Binary quadratic forms a*x^2+b*x*y+c*y^2 have discriminant d=b^2-4ac and gcd(a,b,c)=1.
Also primes of the form -x^2+6xy+5y^2. cf. A243187.

Examples

			a(4)=31 because we can write 31=-2*7^2+4*7*3+5*3^2 (or 31=10*1^2+16*1*1+5*1^2).
		

References

  • Z. I. Borevich and I. R. Shafarevich, Number Theory. Academic Press, NY, 1966.
  • D. B. Zagier, Zetafunktionen und quadratische Körper, Springer, 1981.

Crossrefs

Cf. A141190 (d=56) A038872 (d=5). A038873 (d=8). A068228, A141123 (d=12). A038883 (d=13). A038889 (d=17). A141111, A141112 (d=65).
For a list of sequences giving numbers and/or primes represented by binary quadratic forms, see the "Binary Quadratic Forms and OEIS" link.

Programs

  • Mathematica
    Reap[For[p = 2, p < 2000, p = NextPrime[p], If[FindInstance[p == -2*x^2 + 4*x*y + 5*y^2, {x, y}, Integers, 1] =!= {}, Print[p]; Sow[p]]]][[2, 1]] (* Jean-François Alcover, Oct 25 2016 *)

Extensions

More terms from Colin Barker, Apr 05 2015