A141191 Primes of the form -2*x^2+4*x*y+5*y^2 (as well as of the form 10*x^2+16*x*y+5*y^2).
5, 7, 13, 31, 47, 61, 101, 103, 157, 167, 173, 181, 199, 223, 229, 269, 271, 293, 311, 349, 367, 383, 397, 439, 461, 479, 503, 509, 607, 647, 661, 677, 719, 727, 733, 773, 797, 829, 839, 853, 887, 941, 983, 997, 1013, 1021, 1039, 1063, 1069, 1109, 1151, 1181
Offset: 1
Keywords
Examples
a(4)=31 because we can write 31=-2*7^2+4*7*3+5*3^2 (or 31=10*1^2+16*1*1+5*1^2).
References
- Z. I. Borevich and I. R. Shafarevich, Number Theory. Academic Press, NY, 1966.
- D. B. Zagier, Zetafunktionen und quadratische Körper, Springer, 1981.
Links
- N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
Crossrefs
Programs
-
Mathematica
Reap[For[p = 2, p < 2000, p = NextPrime[p], If[FindInstance[p == -2*x^2 + 4*x*y + 5*y^2, {x, y}, Integers, 1] =!= {}, Print[p]; Sow[p]]]][[2, 1]] (* Jean-François Alcover, Oct 25 2016 *)
Extensions
More terms from Colin Barker, Apr 05 2015
Comments