This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A141199 #38 Sep 30 2024 09:16:22 %S A141199 1,1,3,7,17,38,87,191,421,911,1963,4186,8885,18724,39284,82005,170521, %T A141199 353214,729290,1501184,3081869,6311404,12896983,26301515,53541702, %U A141199 108815626,220824295,447524559,905850001,1831526719 %N A141199 Number of hierarchical ordered partitions of partitions. %C A141199 Consider the "ordered partitions of partitions" as described in A055887. They are produced by introducing separators (a term used by J. Riordan) between the parts of a partition. If a partition has P parts, then it is possible to introduce 1, 2, ... P-1 separators. Let "|" denote such a separator. We just append 1,2,...,P-1 separators to each integer partition of n and subsequently form all permutation of the resulting list (which is composed of parts and separators). %C A141199 There are some rules: If we do not append a separator, then we do not perform any permutation. Furthermore, we do not accept permutations which have a dangling separator in front of the integer parts or past them. E.g. the permutations [|,1,2,3] and [1,2,3,|] are forbidden. Furthermore, sequences of separators as "|,|" are forbidden. %C A141199 Now we impose a further restriction on the permutations. Consider the elements between two separators. We call their number "occupation number". We just request that the occupation number of a ordered partition is monotonically decreasing (if we start from the left to the right of a permutation written in our notation). If we interpret a separator as a level, then we can speak of a hierarchy. E.g. we do not count [1,|,2,3,|,4] as a hierarchy, but we accept [1,2|,3,4] as a hierarchy. We thus speak of "hierarchically ordered partitions of partitions" for this sequence. %C A141199 With the generating function f := z -> 1/(mul(1-z^i/mul(1-z^j,j=1..i), i=1..25)); we get the asymptotic expansion using the command equivalent (f(z),z,n); %C A141199 The result is 3.788561346*exp(-n)^(-log(2)) + O(1/n*exp(-n)^(-log(2))). Let fas := n -> 3.788562346*exp(-n)^(-log(2)); then for n=60 we get fas(60)/A141199(60)= .4367915009e19/4344507472742893655 = 1.005387846. %C A141199 In short, a(n) is the number of finite sequences of integer partitions with weakly decreasing lengths and total sum n. The case of twice-partitions is A358831. A version choosing compositions is A218482. The strictly decreasing case is A358836. For ordered set partitions we have A005651. For weakly decreasing bigomega see A358335. - _Gus Wiseman_, Dec 05 2022 %H A141199 Seiichi Manyama, <a href="/A141199/b141199.txt">Table of n, a(n) for n = 0..1000</a> %H A141199 Thomas Wieder, <a href="http://www.m-hikari.com/ams/ams-password-2009/ams-password53-56-2009/wiederAMS53-56-2009.pdf">The number of certain rankings and hierarchies formed from labeled or unlabeled elements and sets</a>, Applied Mathematical Sciences, vol. 3, 2009, no. 55, 2707 - 2724. [_Thomas Wieder_, Nov 14 2009] %F A141199 G.f.: 1/Product_{i>=1} (1-x^i/Product_{j=1..i} (1-x^j)). - _Vladeta Jovovic_, Jul 16 2008 %e A141199 n=1: %e A141199 [1] %e A141199 ------------------------- %e A141199 n=2: %e A141199 [1, 1], %e A141199 [1, "|", 1], %e A141199 [2] %e A141199 ------------------------- %e A141199 n=3: %e A141199 [1, 2], %e A141199 [1, "|", 1, "|", 1], %e A141199 [1, 1, 1], %e A141199 [3], %e A141199 [2, "|", 1], %e A141199 [1, 1, "|", 1], %e A141199 [1, "|", 2] %e A141199 ------------------------- %e A141199 n=4: %e A141199 [1, 1, 1, "|", 1], %e A141199 [1, 1, "|", 1, 1], %e A141199 [2, 2], %e A141199 [1, 3], %e A141199 [1, 1, 1, 1], %e A141199 [1, 1, 2], %e A141199 [4], %e A141199 [1, "|", 1, "|", 1, "|", 1], %e A141199 [1, 2, "|", 1], %e A141199 [1, 1, "|", 2], %e A141199 [1, 1, "|", 1, "|", 1], %e A141199 [2, "|", 1, "|", 1], %e A141199 [1, "|", 2, "|", 1], %e A141199 [1, "|", 1, "|", 2], %e A141199 [1, "|", 3], %e A141199 [3, "|", 1], %e A141199 [2, "|", 2]. %p A141199 A Maple program to generate these "hierarchically ordered partitions of partitions" is available on request. %p A141199 An asymptotic expansion can be found using the generating function given by Vladeta Jovovic. For that purpose we use the Maple program "equivalent" from Bruno Salvy (http://ago.inria.fr/libraries/libraries.html). %o A141199 (PARI) my(N=40, x='x+O('x^N)); Vec(1/prod(k=1, N, 1-x^k/prod(j=1, k, 1-x^j))) \\ _Seiichi Manyama_, Jan 18 2022 %Y A141199 Cf. A055887, A083355, A140585. %Y A141199 Cf. A000041, A000219, A001970, A005651, A063834, A129519, A218482, A358335, A358831, A358836, A358908. %K A141199 nonn %O A141199 0,3 %A A141199 _Thomas Wieder_, Jun 13 2008, Jun 29 2008, Jul 28 2008 %E A141199 More terms from _Vladeta Jovovic_, Jul 16 2008 %E A141199 a(0)=1 prepended by _Seiichi Manyama_, Jan 18 2022