cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A141215 Primes of the form 3*x^2+5*x*y-3*y^2 (as well as 5*x^2+9*x*y+y^2).

Original entry on oeis.org

3, 5, 13, 19, 41, 47, 61, 73, 83, 97, 103, 107, 109, 113, 127, 131, 137, 149, 163, 167, 179, 197, 199, 229, 239, 241, 257, 263, 269, 271, 283, 293, 317, 347, 353, 367, 379, 431, 439, 443, 449, 461, 463, 479, 487, 491, 503, 563, 569, 571, 601, 607, 613, 619
Offset: 1

Views

Author

Laura Caballero Fernandez, Lourdes Calvo Moguer, Maria Josefa Cano Marquez, Oscar Jesus Falcon Ganfornina and Sergio Garrido Morales (sergarmor(AT)yahoo.es), Jun 14 2008

Keywords

Comments

Discriminant = 61. Class = 1. Binary quadratic forms a*x^2 + b*x*y + c*y^2 have discriminant d = b^2 - 4ac.
A subsequence of (and may possibly coincide with) A038941. - R. J. Mathar, Jul 22 2008
3*x^2+5*x*y-3*y^2 and 5*x^2+9*x*y+y^2 are equivalent forms.
Also, primes of the form x^2 - 61y^2, of discriminant 244.

Examples

			a(8) = 73 because we can write 73 = 3*4^2+5*4*5-3*5^2 (or 73 = 5*3^2+9*3*1+1^2).
		

References

  • Z. I. Borevich and I. R. Shafarevich, Number Theory.

Crossrefs

Cf. A038872 (d=5). A038873 (d=8). A068228, A141123 (d=12). A038883 (d=13). A038889 (d=17). A141111, A141112 (d=65).
Primes in A243654.
For a list of sequences giving numbers and/or primes represented by binary quadratic forms, see the "Binary Quadratic Forms and OEIS" link.

Programs

  • Maple
    select(p -> isprime(p) and nops([isolve(x^2 - 61*y^2 = p)])>0, [seq(2*i+1,i=1..1000)]); # Robert Israel, Jun 11 2014
  • Mathematica
    terms = 100; d = 61;
    Table[3*x^2 + 5*x*y - 3*y^2, {x, 1, terms}, {y, Floor[(5 - Sqrt[d])*x/6], Ceiling[(5 + Sqrt[d])*x/6]}] // Flatten // Select[#, Positive[#] && PrimeQ[#]&]& // Union // Take[#, terms]& (* Jean-François Alcover, Feb 28 2019 *)