A141215 Primes of the form 3*x^2+5*x*y-3*y^2 (as well as 5*x^2+9*x*y+y^2).
3, 5, 13, 19, 41, 47, 61, 73, 83, 97, 103, 107, 109, 113, 127, 131, 137, 149, 163, 167, 179, 197, 199, 229, 239, 241, 257, 263, 269, 271, 283, 293, 317, 347, 353, 367, 379, 431, 439, 443, 449, 461, 463, 479, 487, 491, 503, 563, 569, 571, 601, 607, 613, 619
Offset: 1
Keywords
Examples
a(8) = 73 because we can write 73 = 3*4^2+5*4*5-3*5^2 (or 73 = 5*3^2+9*3*1+1^2).
References
- Z. I. Borevich and I. R. Shafarevich, Number Theory.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- N. J. A. Sloane et al., Binary Quadratic Forms and OEIS: Index to related sequences, programs, references. OEIS wiki, June 2014.
- D. B. Zagier, Zetafunktionen und quadratische Körper, Springer, 1981.
Crossrefs
Programs
-
Maple
select(p -> isprime(p) and nops([isolve(x^2 - 61*y^2 = p)])>0, [seq(2*i+1,i=1..1000)]); # Robert Israel, Jun 11 2014
-
Mathematica
terms = 100; d = 61; Table[3*x^2 + 5*x*y - 3*y^2, {x, 1, terms}, {y, Floor[(5 - Sqrt[d])*x/6], Ceiling[(5 + Sqrt[d])*x/6]}] // Flatten // Select[#, Positive[#] && PrimeQ[#]&]& // Union // Take[#, terms]& (* Jean-François Alcover, Feb 28 2019 *)
Comments