cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A141241 a(n) = number of divisors of n-th positive integer with a nonprime number of divisors. a(n) = the number of divisors of A139118(n).

This page as a plain text file.
%I A141241 #24 Feb 26 2025 01:59:15
%S A141241 1,4,4,4,6,4,4,6,6,4,4,8,4,4,6,8,6,4,4,4,9,4,4,8,8,6,6,4,10,6,4,6,8,4,
%T A141241 8,4,4,12,4,6,4,8,6,4,8,12,4,6,6,4,8,10,4,12,4,4,4,8,12,4,6,4,4,4,12,
%U A141241 6,6,9,8,8,8,4,12,8,4,10,8,4,6,6,4,4,16,4,4,6,4,12,8,4,8,12,4,4,8,8,8,12,4
%N A141241 a(n) = number of divisors of n-th positive integer with a nonprime number of divisors. a(n) = the number of divisors of A139118(n).
%C A141241 a(1) = 1 and all other terms are composite, of course.
%H A141241 John Tyler Rascoe, <a href="/A141241/b141241.txt">Table of n, a(n) for n = 1..10000</a>
%F A141241 a(n) = A000005(A139118(n)). - _Michel Marcus_, Feb 26 2025
%t A141241 Select[DivisorSigma[0,Range[200]],!PrimeQ[#]&] (* _Harvey P. Dale_, Mar 20 2015 *)
%o A141241 (PARI) for(i=1,200,if(!isprime(numdiv(i)),print1(numdiv(i)","))) \\ _Franklin T. Adams-Watters_, Apr 09 2009
%o A141241 (Python)
%o A141241 from sympy import primepi, integer_nthroot, primerange, divisor_count
%o A141241 def A141241(n):
%o A141241     def f(x): return int(n+sum(primepi(integer_nthroot(x,k-1)[0]) for k in primerange(x.bit_length()+1)))
%o A141241     m, k = n, f(n)
%o A141241     while m != k: m, k = k, f(k)
%o A141241     return divisor_count(m) # _Chai Wah Wu_, Feb 22 2025
%Y A141241 Cf. A000005, A139118, A141242.
%K A141241 nonn
%O A141241 1,2
%A A141241 _Leroy Quet_, Jun 16 2008
%E A141241 More terms from _Franklin T. Adams-Watters_, Apr 09 2009