cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A141242 a(n) is the number of divisors of the n-th positive integer with a prime number of divisors. In other words, a(n) is the number of divisors of A009087(n).

This page as a plain text file.
%I A141242 #22 Feb 22 2025 16:59:41
%S A141242 2,2,3,2,2,3,2,2,5,2,2,2,3,2,2,2,2,2,2,3,2,2,2,7,2,2,2,2,5,2,2,2,2,2,
%T A141242 2,2,2,3,2,2,2,2,2,2,2,2,2,3,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,
%U A141242 2,2,3,2,2,2,2,2,2,2,2,2,2,2,3,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2
%N A141242 a(n) is the number of divisors of the n-th positive integer with a prime number of divisors. In other words, a(n) is the number of divisors of A009087(n).
%C A141242 A009087(n) is of the form p^(a(n)-1), where p is some prime.
%H A141242 Michael De Vlieger, <a href="/A141242/b141242.txt">Table of n, a(n) for n = 1..10000</a>
%F A141242 a(n) = A000005(A009087(n)).
%t A141242 DivisorSigma[0, #] &@ Select[Range@ 500, PrimeQ@ DivisorSigma[0, #] &] (* _Michael De Vlieger_, Aug 19 2017 *)
%o A141242 (Python)
%o A141242 from sympy import primepi, integer_nthroot, primerange, factorint
%o A141242 def A141242(n):
%o A141242     def bisection(f,kmin=0,kmax=1):
%o A141242         while f(kmax) > kmax: kmax <<= 1
%o A141242         kmin = kmax >> 1
%o A141242         while kmax-kmin > 1:
%o A141242             kmid = kmax+kmin>>1
%o A141242             if f(kmid) <= kmid:
%o A141242                 kmax = kmid
%o A141242             else:
%o A141242                 kmin = kmid
%o A141242         return kmax
%o A141242     def f(x): return int(n+x-sum(primepi(integer_nthroot(x,k-1)[0]) for k in primerange(x.bit_length()+1)))
%o A141242     return list(factorint(bisection(f,n,n)).values())[0]+1 # _Chai Wah Wu_, Feb 22 2025
%Y A141242 Cf. A000005, A009087, A141241.
%K A141242 nonn
%O A141242 1,1
%A A141242 _Leroy Quet_, Jun 16 2008
%E A141242 Extended by _Ray Chandler_, Jun 25 2009