A141274 Composite numbers k such that k+1 is prime and the index in the composites is also prime.
12, 28, 36, 60, 100, 130, 138, 150, 172, 180, 198, 222, 270, 292, 348, 396, 420, 432, 456, 520, 540, 568, 612, 618, 640, 682, 732, 768, 786, 820, 838, 880, 928, 996, 1032, 1060, 1068, 1090, 1096, 1212, 1222, 1276, 1300, 1306, 1320, 1372, 1428, 1486, 1548
Offset: 1
Examples
a(1) = 12 because 12+1 = 13, prime and the index of 12 is 5, so both the composite 12+1 and the index are prime.
Links
- Michael S. Branicky, Table of n, a(n) for n = 1..10000
- Carlos Rivera, Puzzle 449. Count N composites after p, The Prime Puzzles & Problems Connection.
Crossrefs
Cf. A141275.
Programs
-
Mathematica
Select[Range[4,1548],!PrimeQ[#]&&PrimeQ[#+1]&&PrimeQ[#-PrimePi[#]-2]&] (* James C. McMahon, Jul 19 2025 *)
-
Python
from sympy import compositepi, isprime def ok(n): return not isprime(n) and isprime(n+1) and isprime(compositepi(n)-1) print([k for k in range(1549) if ok(k)]) # Michael S. Branicky, Dec 28 2021
Formula
Compute the composite numbers beginning with 4. At 4 the composite index is zero, at 6 it is 1, at 8 it is 2, ... and at 12 it is 5, etc.
Extensions
Edited by N. J. A. Sloane, Jun 21 2008
Comments