cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A141284 a(n) = (p_max - 1)*...*p*...*(p_min + 2), where p_max*...*p*...*p_min = k(n) = n-th composite.

Original entry on oeis.org

4, 8, 8, 10, 16, 16, 24, 20, 16, 24, 32, 30, 40, 32, 28, 48, 30, 48, 48, 32, 50, 64, 42, 48, 72, 60, 64, 72, 80, 60, 88, 64, 54, 80, 80, 96, 72, 70, 96, 90, 112, 96, 120, 90, 64, 84, 120, 128, 110, 120, 96, 144, 100, 144, 90, 144, 128, 90, 160, 144, 112, 168, 140, 160
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Aug 08 2008

Keywords

Comments

In the prime factorization of the n-th composite, replace one instance of the largest prime factor A052369(n) with A052369(n)-1 and replace one instance of the smallest prime factor A056608(n) with A056608(n)+2.

Examples

			For n=1, k(1) = 4 = (p_max=2)*(p_min=2), so a(1) = (2-1)*(2+2) = 1*4 = 4;
for n=2, k(2) = 6 = (p_max=3)*(p_min=2), so a(2) = (3-1)*(2+2) = 2*4 = 8;
for n=3, k(3) = 8 = (p_max=2)*(p=2)*(p_min=2), so a(3) = (2-1)*2*(2+2) = 1*2*4 = 8; etc.
		

Crossrefs

Cf. A002808.

Programs

  • Mathematica
    Map[Times @@ Flatten[{#[[1]] + 2, #[[2 ;; -2]], #[[-1]] - 1}] &@ Flatten[ConstantArray[#1, #2] & @@@ FactorInteger[#]] &, Select[Range[120], CompositeQ]] (* Michael De Vlieger, Jan 25 2023 *)

Formula

a(n) = A002808(n)*(A052369(n)-1)*(A056608(n)+2)/(A052369(n)*A056608(n)).

Extensions

Definition and examples corrected and entries checked by R. J. Mathar, Mar 29 2010
Simplified by Jon E. Schoenfield, Jan 25 2023