This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A141290 #20 May 22 2024 21:38:12 %S A141290 1,3,4,5,12,16,7,20,48,64,9,28,80,192,256,11,36,112,320,768,1024,13, %T A141290 44,144,448,1280,3072,4096,15,52,176,576,1792,5120,12288,16384,17,60, %U A141290 208,704,2304,7168,20480,49152,65536,19,68,240,832,2816,9216,28672,81920,196608,262144 %N A141290 Triangle read by rows, descending antidiagonals of a (1, 3, 5, ...) * (1, 4, 16, ...) multiplication table. %C A141290 Binary representation of all terms ends in an even number of zeros (cf. A003159). %F A141290 From _Stefano Spezia_, May 21 2024: (Start) %F A141290 G.f. as array: x*y*(1 + y)/((1 - 4*x)*(1 - y)^2). %F A141290 E.g.f. as array: (exp(4*x) - 1)*(exp(y)*(1 - 2*y) - 1)/4. (End) %e A141290 Given the multiplication table (1, 3, 5, ...) * (1, 4, 16, ...); i.e., odd numbers as column headings, powers of 4 along the left border: %e A141290 1, 3, 5, 7, ... %e A141290 4, 12, 20, 28, ... %e A141290 16, 48, 80, 112, ... %e A141290 64, 192, 320, 448, ... %e A141290 ... %e A141290 Rows of the triangle = descending antidiagonals of the array, getting: %e A141290 1; %e A141290 3, 4; %e A141290 5, 12, 16; %e A141290 7, 20, 48, 64; %e A141290 9, 28, 80, 192, 256; %e A141290 11, 36, 112, 320, 768, 1024; %e A141290 13, 44, 144, 448, 1280, 3072, 4096; %e A141290 15, 52, 176, 576, 1792, 5120, 122288, 16384; %e A141290 ... %t A141290 A[n_,k_]:=(2k-1)*4^(n-1); Table[A[k,n-k+1],{n,10},{k,n}]//Flatten (* _Stefano Spezia_, May 21 2024 *) %Y A141290 Cf. A003159, A141291. %K A141290 nonn,tabl %O A141290 1,2 %A A141290 _Gary W. Adamson_, Jun 22 2008 %E A141290 a(14), a(36) corrected by _Peter Munn_, Aug 27 2019