This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A141302 #25 Dec 22 2024 07:41:16 %S A141302 11,59,71,131,179,191,239,251,311,359,419,431,479,491,599,659,719,839, %T A141302 911,971,1019,1031,1091,1151,1259,1319,1439,1451,1499,1511,1559,1571, %U A141302 1619,1811,1871,1931,1979,2039,2099,2111,2339,2351,2399,2411,2459,2531,2579,2591,2699,2711 %N A141302 Primes of the form -x^2+6*x*y+6*y^2 (as well as of the form 11*x^2+18*x*y+6*y^2). %C A141302 Discriminant = 60. Class number = 4. Binary quadratic forms a*x^2+b*x*y+c*y^2 have discriminant d=b^2-4ac and gcd(a,b,c)=1 if they are primitive. %C A141302 The Pell form X^2 - 15*Y^2 represents the negative primes -a(n), for n >= 1. - _Wolfdieter Lang_, Nov 28 2024 %D A141302 Z. I. Borevich and I. R. Shafarevich, Number Theory. Academic Press, NY, 1966. %D A141302 D. B. Zagier, Zetafunktionen und quadratische Körper, Springer, 1981. %H A141302 N. J. A. Sloane et al., <a href="https://oeis.org/wiki/Binary_Quadratic_Forms_and_OEIS">Binary Quadratic Forms and OEIS</a> (Index to related sequences, programs, references) %F A141302 Primes congruent to {11, 59} (mod 60). -_Wolfdieter Lang_, Dec 22 2024 %e A141302 a(3)=71 because we can write 71=-1^2+6*1*3+6*3^2 (or 71=11*1^2+18*1*2+6*2^2). %t A141302 Reap[For[p = 2, p < 3000, p = NextPrime[p], If[FindInstance[p == -x^2 + 6*x*y + 6*y^2, {x, y}, Integers, 1] =!= {}, Print[p]; Sow[p]]]][[2, 1]] (* _Jean-François Alcover_, Oct 25 2016 *) %Y A141302 Cf. A107152, A141303, A141304 (d=60). %Y A141302 Primes in A237606. %K A141302 nonn %O A141302 1,1 %A A141302 Laura Caballero Fernandez, Lourdes Calvo Moguer, Maria Josefa Cano Marquez, Oscar Jesus Falcon Ganfornina and Sergio Garrido Morales (oscfalgan(AT)yahoo.es), Jun 24 2008 %E A141302 Offset corrected by _Mohammed Yaseen_, May 20 2023