A141303 Primes of the form 2*x^2+6*x*y-3*y^2 (as well as of the form 5*x^2+10*x*y+2*y^2).
2, 5, 17, 53, 113, 137, 173, 197, 233, 257, 293, 317, 353, 557, 593, 617, 653, 677, 773, 797, 857, 953, 977, 1013, 1097, 1193, 1217, 1277, 1373, 1433, 1493, 1553, 1613, 1637, 1697, 1733, 1877, 1913, 1973, 1997, 2153, 2213, 2237, 2273, 2297, 2333, 2357, 2393, 2417, 2477
Offset: 1
Keywords
Examples
a(3)=17 because we can write 17=2*2^2+6*2*1-3*1^2 (or 17=5*1^2+10*1*1+2*1^2).
References
- Z. I. Borevich and I. R. Shafarevich, Number Theory.
Links
- Juan Arias-de-Reyna, Table of n, a(n) for n = 1..10000
- N. J. A. Sloane et al., Binary Quadratic Forms and OEIS: Index to related sequences, programs, references. OEIS wiki, June 2014.
- D. B. Zagier, Zetafunktionen und quadratische Körper, Springer, 1981.
Programs
-
Mathematica
Select[Prime[Range[500]], # == 2 || # == 5 || MatchQ[Mod[#, 60], 17|53]&] (* Jean-François Alcover, Oct 28 2016 *)
Comments