cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A141307 Number of bicolored connected permutations.

Original entry on oeis.org

2, 4, 24, 208, 2272, 29504, 441216, 7447808, 139951616, 2897228800, 65533753344, 1608679247872, 42607095439360, 1211489065582592, 36818002833014784, 1191230067009978368, 40888060455008731136, 1484180363633916903424, 56809679459301490950144, 2287045885619374501396480, 96608773951155028111654912
Offset: 1

Views

Author

Jean-Yves Thibon (jyt(AT)univ-mlv.fr), Jun 26 2008

Keywords

Comments

Number of generators of degree n of the Hopf algebra of free quasi-symmetric functions of level 2. For level r, this would be r^n*c(n), where c(n) is the number of connected permutations (A003319).
These are also the dimensions of the graded components of the primitive Lie algebra of the same Hopf algebra.

Examples

			a(1)=2 because there are two colorings of the permutation (1).
		

Crossrefs

Cf. A003319.

Programs

  • Maple
    2^n*op(n,INVERTi([seq(k!, k=1..n)]))
  • Mathematica
    a3319[0] = 0; a3319[n_] := a3319[n] = n! - Sum[k! a3319[n-k], {k, 1, n-1}];
    a[n_] := 2^n a3319[n];
    Array[a, 21] (* Jean-François Alcover, Dec 10 2018 *)

Formula

a(n) = 2^n * A003319(n).
G.f.: 1/x - Q(0)/x where Q(k) = 1 - 2*x*(k+1)/(1 - 2*x*(k+1)/Q(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Apr 02 2013
G.f.: 1/x - (1 + x)/x/(x*Q(0) + 1) where Q(k)= 1 + (2*k+2)/(1 - x/(x + 1/Q(k+1) )); (continued fraction ). - Sergei N. Gladkovskii, Apr 11 2013
G.f.: 1/x - G(0)/(2*x), where G(k)= 1 + 1/(1 - 1/(1 - 1/(2*x*(2*k+2)) + 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 29 2013