This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A141336 #9 Oct 25 2016 14:39:43 %S A141336 2,13,29,41,73,101,173,193,197,233,257,269,277,317,349,353,397,409, %T A141336 449,461,509,541,577,593,601,653,673,761,809,821,829,853,857,877,929, %U A141336 997,1013,1021,1061,1093,1097,1117,1129,1153,1181,1237,1277,1289,1297,1301 %N A141336 Primes of the form 2*x^2+6*x*y-7*y^2 (as well as of the form 2*x^2+10*x*y+y^2). %C A141336 Discriminant = 92. Class = 2. Binary quadratic forms a*x^2+b*x*y+c*y^2 have discriminant d=b^2-4ac and gcd(a,b,c)=1. %D A141336 Z. I. Borevich and I. R. Shafarevich, Number Theory. Academic Press, NY, 1966. %D A141336 D. B. Zagier, Zetafunktionen und quadratische Körper, Springer, 1981. %e A141336 a(2)=13 because we can write 13=2*2^2+6*2*1-7*1^2 (or 13=2*1^2+10*1*1+1^2). %t A141336 Reap[For[p = 2, p < 2000, p = NextPrime[p], If[FindInstance[p == 2*x^2 + 6*x*y - 7*y^2, {x, y}, Integers, 1] =!= {}, Print[p]; Sow[p]]]][[2, 1]] (* _Jean-François Alcover_, Oct 25 2016 *) %Y A141336 Cf. A141337 (d=92). %K A141336 nonn %O A141336 1,1 %A A141336 Laura Caballero Fernandez, Lourdes Calvo Moguer, Maria Josefa Cano Marquez, Oscar Jesus Falcon Ganfornina and Sergio Garrido Morales (oscfalgan(AT)yahoo.es), Jun 25 2008 %E A141336 More terms from _Colin Barker_, Apr 05 2015