This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A141339 #13 Feb 18 2022 15:40:41 %S A141339 3,11,17,23,29,53,83,89,137,167,179,197,239,251,263,269,347,353,383, %T A141339 389,401,449,461,491,509,557,569,587,641,647,677,719,743,761,773,797, %U A141339 809,821,827,863,881,911,929,941,947,953,983,1013,1019,1049,1091,1097 %N A141339 Primes of the form -x^2+9*x*y+3*y^2 (as well as of the form 11*x^2+15*x*y+3*y^2). %C A141339 Discriminant = 93. Class = 2. Binary quadratic forms a*x^2 + b*x*y + c*y^2 have discriminant d = b^2 - 4ac. %D A141339 Z. I. Borevich and I. R. Shafarevich, Number Theory. %H A141339 N. J. A. Sloane et al., <a href="/wiki/Binary_Quadratic_Forms_and_OEIS">Binary Quadratic Forms and OEIS</a>: Index to related sequences, programs, references. OEIS wiki, June 2014. %H A141339 D. B. Zagier, <a href="https://doi.org/10.1007/978-3-642-61829-1">Zetafunktionen und quadratische Körper</a>, Springer, 1981. %e A141339 a(5) = 29 because we can write 29 = -1^2 + 9*1*2 + 3*2^2 (or 29 = 11*1^2 + 15*1*1 + 3*1^2). %Y A141339 Cf. A141338 (d=93). %K A141339 nonn %O A141339 1,1 %A A141339 Laura Caballero Fernandez, Lourdes Calvo Moguer, Maria Josefa Cano Marquez, Oscar Jesus Falcon Ganfornina and Sergio Garrido Morales (oscfalgan(AT)yahoo.es), Jun 25 2008 %E A141339 More terms from _Colin Barker_, Apr 05 2015