This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A141369 #18 Feb 28 2023 06:48:21 %S A141369 1,1,-1,-8,21,336,-1445,-35328,212009,7010560,-54073449,-2258780160, %T A141369 21303275389,1076400869376,-12005345614093,-712084337721344, %U A141369 9169911825026385,624667885401341952,-9122376282532978769,-701910552416102645760,11462725659070874233061 %N A141369 E.g.f. satisfies A(x) = exp(x*A(-x)). %H A141369 Seiichi Manyama, <a href="/A141369/b141369.txt">Table of n, a(n) for n = 0..405</a> %F A141369 E.g.f.: A(x) = exp(x*exp(-x*exp(x*exp(-x*exp(x*...))))). %F A141369 a(n+1) = Sum_{i=0..n} (i+1)*(-1)^i*binomial(n,i)*a(i)*a(n-i) - from a formula given in A096538 by _Vladeta Jovovic_. %F A141369 a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(n,k) * (n-k+1)^(k-1) * k^(n-k). - _Paul D. Hanna_, Jun 13 2009 %F A141369 |a(n)| ~ c * n! / (n^(3/2) * r^n), where r = 0.5098636055230131449434409623392631606695606770070519241... is the root of the equation r*exp(1/LambertW(-I/r))/I = LambertW(-I/r), and c = 0.63217617290426743984700577681768332... if n is even, and c = 1.4315233793609300008688492299361204... if n is odd. - _Vaclav Kotesovec_, Feb 26 2014 %e A141369 E.g.f.: A(x) = 1 + x - x^2/2! - 8*x^3/3! + 21*x^4/4! + 336*x^5/5! --++ ... %e A141369 Log(A(x)) = x - x^2 - x^3/2! + 8*x^4/3! + 21*x^4/4! - 336*x^5/5! -++- ... %t A141369 Flatten[{1,Table[Sum[(-1)^(n-k) * Binomial[n,k] * (n-k+1)^(k-1) * k^(n-k),{k,0,n}],{n,1,20}]}] (* _Vaclav Kotesovec_, Feb 26 2014 *) %o A141369 (PARI) {a(n)=local(A=1); for(i=0, n, A=exp((-1)^(n-i)*x*A+x*O(x^n))); n!*polcoeff(A, n)} %o A141369 (PARI) {a(n)=sum(k=0,n,(-1)^(n-k)*binomial(n,k)*(n-k+1)^(k-1)*k^(n-k))} \\ _Paul D. Hanna_, Jun 13 2009 %Y A141369 Cf. A096538. %K A141369 sign %O A141369 0,4 %A A141369 _Paul D. Hanna_, Jun 28 2008