cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A141392 a(n) = RMS( A141391(1) through A141391(n) ).

Original entry on oeis.org

1, 5, 5, 7, 14, 14, 70, 70, 66, 66, 462, 462, 616, 616, 600, 600, 750, 750, 730, 730, 876, 876, 996, 996, 1162, 1162, 1582, 1554, 1554, 1638, 1638, 1872, 1872, 4368, 4368, 4419, 4359, 4359, 13209, 13090, 13090, 12950, 12950, 12802, 12802, 16954, 16954
Offset: 1

Views

Author

Andrew Weimholt, Jun 29 2008

Keywords

Examples

			a(4) = 7 because first 4 terms of A141391 are 1,7,5,11 and sqrt(mean(1^2, 7^2, 5^2, 11^2)) = 7.
		

Crossrefs

Programs

  • Mathematica
    lim=46;a141391={1};Do[i=1;Until[!MemberQ[a141391,i]&&IntegerQ[RootMeanSquare[Append[a141391,i]]],i++];AppendTo[a141391,i],{n,lim}];a[n_]:=RootMeanSquare[a141391[[1;;n]]];Array[a,lim] (* James C. McMahon, Jul 24 2025 *)

A141393 a(n) is the smallest number, larger than the previous, such that the RMS (Root Mean Square) of a(0) through a(n) is an integer.

Original entry on oeis.org

1, 7, 25, 33, 84, 294, 462, 750, 1155, 1705, 2431, 3017, 18130, 19684, 22052, 28996, 36907, 45925, 61957, 71309, 168889, 471799, 9998261, 11975939, 21577709, 29764925, 853783375, 1388314375, 1438304875, 2710683875, 2741707205, 62802867395, 72342543455
Offset: 0

Views

Author

Andrew Weimholt, Jun 29 2008

Keywords

Comments

Actual RMS values are given by A141394.

Crossrefs

Extensions

a(22)-a(32) from Giovanni Resta, Jan 22 2014

A141394 a(n) = RMS( A141393(0) through A141393(n) ).

Original entry on oeis.org

1, 5, 15, 21, 42, 126, 210, 330, 495, 715, 1001, 1295, 5180, 7252, 9028, 11356, 14195, 17535, 22211, 26887, 45241, 109871, 2087549, 3186259, 5326355, 7832875, 164490375, 308102375, 403718875, 634415375, 794973005, 11129622070, 16694433105, 22566503645
Offset: 0

Views

Author

Andrew Weimholt, Jun 29 2008

Keywords

Examples

			a(3) = 21 because first 4 terms of A141393 are 1,7,25,33 and sqrt(mean(1^2, 7^2, 25^2, 33^2)) = 21.
		

Crossrefs

Extensions

a(22)-a(33) from Giovanni Resta, Jan 22 2014

A236247 Sequence of distinct least squares such that the arithmetic mean of the first n squares is also a square.

Original entry on oeis.org

1, 49, 25, 121, 784, 196, 33124, 4900, 4, 4356, 2304324, 213444, 2371600, 379456, 87616, 360000, 3802500, 562500, 100, 532900, 5456896, 767376, 5934096, 992016, 9947716, 1350244, 32467204, 44100, 2414916, 10458756, 2683044
Offset: 1

Views

Author

Derek Orr, Jan 20 2014

Keywords

Examples

			a(1) = 1.
a(2) is the smallest unused square such that (a(2)+a(1))/2 is a square. So, a(2) = 49.
a(3) is the smallest unused square such that (a(3)+a(2)+a(1))/3 is a square. So, a(3) = 25.
...and so on.
		

Crossrefs

Programs

  • Python
    def Sq(x):
      for n in range(10**15):
        if x == n**2:
          return True
        if x < n**2:
          return False
      return False
    def SqAve(init):
      print(init)
      lst = []
      lst.append(init)
      n = 1
      while n < 10**9:
        if n**2 not in lst:
          if Sq(((sum(lst)+n**2)/(len(lst)+1))):
            print(n**2)
            lst.append(n**2)
            n = 1
          else:
            n += 1
        else:
          n += 1
    SqAve(1)

Formula

a(n) = A141391(n)^2
Showing 1-4 of 4 results.