This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A141399 #25 Jul 13 2024 23:25:32 %S A141399 1,2,3,5,8,9,14,15,20,24,35,80,125,224,384,440,539,714,1715,2079,2400, %T A141399 3024,4374,9800,12375,123200,194480,633555 %N A141399 Positive integers k such that all the distinct primes that divide k or k+1 are members of a set of consecutive primes. In other words, k is included if and only if k*(k+1) is contained in sequence A073491. %C A141399 The smallest prime in the set of consecutive primes is always 2, since k*(k+1) is even. %C A141399 No further terms thru 5*10^8. - _Ray Chandler_, Jun 24 2009 %C A141399 a(29) > 2.29*10^25, if it exists. - _Giovanni Resta_, Nov 30 2019 %C A141399 This sequence contains k such that rad(k*(k+1)) is in A055932, where rad = A007947. - _Michael De Vlieger_, Jul 13 2024 %e A141399 20 is factored as 2^2 * 5^1. 21 is factored as 3^1 * 7^1. Since the distinct primes that divide 20 and 21 (which are 2,3,5,7) form a set of consecutive primes, then 20 is in the sequence. %e A141399 From _Michael De Vlieger_, Jul 13 2024: (Start) %e A141399 Table showing terms a(n) = k such that rad(k*(k+1)) = P(i), where P = A002110. %e A141399 i P(i) { k : rad(k*(k+1)) = P(i) } %e A141399 -------------------------------------------------- %e A141399 1 2 {1} %e A141399 2 6 {2, 3, 8} %e A141399 3 30 {5, 9, 15, 24, 80} %e A141399 4 210 {14, 20, 35, 125, 224, 2400, 4374} %e A141399 5 2310 {384, 440, 539, 3024, 9800} %e A141399 6 30030 {1715, 2079, 123200} %e A141399 7 510510 {714, 12375, 194480} %e A141399 8 9699690 {633555} %e A141399 9 223092870 {} (End) %p A141399 with(numtheory): a:=proc(n) local F, m: F:=`union`(factorset(n), factorset(n+1)): m:=nops(F): if ithprime(m)=F[m] then n else end if end proc: seq(a(n), n=1..1000000); # _Emeric Deutsch_, Aug 12 2008 %t A141399 Select[Range[2^16], Or[IntegerQ@ Log2[#], And[EvenQ[#], Union@ Differences@ PrimePi@ FactorInteger[#][[All, 1]] == {1}]] &[#*(# + 1)] &] (* _Michael De Vlieger_, Jul 13 2024 *) %Y A141399 Cf. A007947, A055932, A073491, A138180. %K A141399 more,nonn %O A141399 1,2 %A A141399 _Leroy Quet_, Aug 03 2008 %E A141399 More terms from _Emeric Deutsch_, Aug 12 2008