This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A141431 #25 Mar 31 2021 04:10:30 %S A141431 0,0,5,0,8,14,0,11,20,27,0,14,26,36,44,0,17,32,45,56,65,0,20,38,54,68, %T A141431 80,90,0,23,44,63,80,95,108,119,0,26,50,72,92,110,126,140,152,0,29,56, %U A141431 81,104,125,144,161,176,189,0,32,62,90,116,140,162,182,200,216,230,0,35,68,99,128,155,180,203,224,243,260,275 %N A141431 Triangle T(n,k) = (k-1)*(3*n-k+1), read by rows. %H A141431 G. C. Greubel, <a href="/A141431/b141431.txt">Rows n = 1..50 of the triangle, flattened</a> %F A141431 G.f.: Sum_{n>=0} Sum_{k>=0} T(n,k)*x^n*y^k = y^2*x*(x*y-4*y+x+2)/((1-y)^3*(1-x)^2). - _R. J. Mathar_, Nov 27 2015. x and y swapped to align with standard, 19 Feb 2020 %F A141431 Sum_{k=1..n} T(n, k) = (n-1)*n*(7*n+1)/6 = A245301(n-1). - _G. C. Greubel_, Mar 31 2021 %e A141431 Triangle begins as: %e A141431 0; %e A141431 0, 5; %e A141431 0, 8, 14; %e A141431 0, 11, 20, 27; %e A141431 0, 14, 26, 36, 44; %e A141431 0, 17, 32, 45, 56, 65; %e A141431 0, 20, 38, 54, 68, 80, 90; %e A141431 0, 23, 44, 63, 80, 95, 108, 119; %e A141431 0, 26, 50, 72, 92, 110, 126, 140, 152; %e A141431 0, 29, 56, 81, 104, 125, 144, 161, 176, 189; %p A141431 A141431 := proc(n,k) %p A141431 (k-1)*(3*n-k+1) ; %p A141431 end proc: %p A141431 seq(seq(A141431(n,k),k=1..n),n=1..14) ; # _R. J. Mathar_, Nov 10 2011 %t A141431 Table[(k-1)*(3*n-k+1), {n,15}, {k,n}]//Flatten (* _G. C. Greubel_, Mar 31 2021 *) %o A141431 (Magma) [(k-1)*(3*n-k+1): k in [1..n], n in [1..15]]; // _G. C. Greubel_, Mar 31 2021 %o A141431 (Sage) flatten([[(k-1)*(3*n-k+1) for k in (1..n)] for n in (1..15)]) # _G. C. Greubel_, Mar 31 2021 %Y A141431 Columns: A016789 (k=2), A016933 (k=3), A008591 (k=4). %Y A141431 Cf. A245301 (row sums). %K A141431 nonn,easy,tabl %O A141431 1,3 %A A141431 _Roger L. Bagula_ and _Gary W. Adamson_, Aug 06 2008 %E A141431 More terms added by _G. C. Greubel_, Mar 31 2021