A141490 Least number k having n representations as the sum of the minimal number of squares, A002828.
1, 27, 28, 63, 103, 124, 135, 175, 207, 247, 255, 252, 327, 351, 412, 375, 511, 423, 543, 679, 540, 639, 687, 495, 567, 663, 759, 775, 847, 988, 783, 1111, 735, 1327, 855, 927, 1191, 999, 1308, 975, 1143, 1383, 1263, 1071, 1463, 1359, 1495, 1375, 1479
Offset: 1
Keywords
Examples
a(1) = 1 since 1 = 1^2; a(2) = 27 since 27 = 1^2 + 1^2 + 5^2 = 3^2 + 3^2 + 3^2 (2 ways); a(3) = 28 since 28 = 1^2 + 1^2 + 1^2 +5^2 = 1^2 + 3^2 + 3^2 + 3^2 = 2^2 + 2^2 + 2^2 + 4^2 (3 ways).
Links
- Eric W. Weisstein, MathWorld: Waring's Problem
Programs
-
Mathematica
t=Table[r=PowersRepresentations[n, 4, 2]; Sort[Tally[4-Count[#, 0] & /@ r]][[1, 2]], {n, 1000}]; u=Union[t]; c=Complement[Range[Max[u]], u]; If[c == {}, mx=u[[-1]], mx=c[[1]]-1]; Flatten[Table[Position[t, n, 1, 1], {n, mx}]]
Comments