This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A141546 #38 Jun 21 2025 14:17:30 %S A141546 272,7232,30848,516608,134094848,2146992128,35184309174272 %N A141546 Numbers whose abundance is 14. %C A141546 a(7) > 10^12. - _Donovan Johnson_, Dec 08 2011 %C A141546 a(7) > 10^13. - _Giovanni Resta_, Mar 29 2013 %C A141546 a(8) > 10^18. - _Hiroaki Yamanouchi_, Aug 23 2018 %C A141546 Any term x of this sequence can be combined with any term y of A141550 to satisfy the property (sigma(x)+sigma(y))/(x+y) = 2, which is a necessary (but not sufficient) condition for two numbers to be amicable. - _Timothy L. Tiffin_, Sep 13 2016 %C A141546 Every number of the form 2^(j-1)*(2^j - 15), where 2^j - 15 is prime (see A059612), is a term. - _Jon E. Schoenfield_, Jun 02 2019 %F A141546 {k: A033880(k) = 14}. - _R. J. Mathar_, Jun 06 2024 %e A141546 a(1) = 272, since sigma(272) - 2*272 = 558 - 544 = 14. - _Timothy L. Tiffin_, Sep 13 2016 %t A141546 lst={};Do[If[n==Plus@@Divisors[n]-n-14,AppendTo[lst,n]],{n,10^4}];Print[lst]; %t A141546 lst = {}; Do[ If[2 n + 14 == DivisorSigma[1, n], AppendTo[lst, n]], {n, 2 10^8, 2}]; lst (* _Robert G. Wilson v_, Aug 17 2008 *) %o A141546 (PARI) isok(n) = sigma(n) - 2*n == 14; \\ _Michel Marcus_, Mar 20 2015 %o A141546 (Magma) [n: n in [1..10^8] | SumOfDivisors(n)- 2*n eq 14]; // _Vincenzo Librandi_, Mar 20 2015 %Y A141546 Cf. A141550 (deficiency 14), A141545 (abundance 12), A141547 (abundance 16). %K A141546 nonn,more %O A141546 1,1 %A A141546 _Vladimir Joseph Stephan Orlovsky_, Aug 16 2008 %E A141546 a(5)-a(6) from _Donovan Johnson_, Dec 21 2008 %E A141546 a(7) from _Hiroaki Yamanouchi_, Aug 23 2018