cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A141547 Numbers n whose abundance is 16.

This page as a plain text file.
%I A141547 #29 Sep 08 2022 08:45:35
%S A141547 550,748,1504,7192,7912,10792,17272,30592,1713592,4526272,8353792,
%T A141547 9928792,11547352,17999992,89283592,173482552,361702144,1081850752,
%U A141547 1845991216,2146926592,11097907192,12985220152,21818579968,34357510144,109170719992,228354264064,279632332792,549746900992
%N A141547 Numbers n whose abundance is 16.
%C A141547 Any term x of this sequence can be combined with any term y of A125248 to satisfy the property (sigma(x)+sigma(y))/(x+y) = 2, which is a necessary (but not sufficient) condition for two numbers to be amicable. - _Timothy L. Tiffin_, Sep 13 2016
%C A141547 a(41) > 10^18 - _Hiroaki Yamanouchi_, Aug 23 2018
%H A141547 Giovanni Resta and Hiroaki Yamanouchi, <a href="/A141547/b141547.txt">Table of n, a(n) for n = 1..40</a> (terms a(1)-a(32) from _Giovanni Resta_)
%e A141547 a(1) = 550, since sigma(550) - 2*550 = 1116 - 1100 = 16. - _Timothy L. Tiffin_, Sep 13 2016
%t A141547 lst={}; Do[If[n==Plus@@Divisors[n]-n-16, AppendTo[lst,n]], {n,10^4}]; Print[lst];
%t A141547 lst = {}; Do[ If[2 n + 16 == DivisorSigma[1, n], AppendTo[lst, n]], {n, 10^8}]; lst (* _Robert G. Wilson v_, Aug 17 2008 *)
%t A141547 Select[Range[1, 10^8], DivisorSigma[1, #] - 2 # == 16 &] (* _Vincenzo Librandi_, Sep 14 2016 *)
%o A141547 (Magma) [n: n in [1..9*10^6] | (SumOfDivisors(n)-2*n) eq 16]; // _Vincenzo Librandi_, Sep 14 2016
%o A141547 (PARI) is(n)=sigma(n)==2*n+16 \\ _Charles R Greathouse IV_, Feb 21 2017
%Y A141547 Cf. A125248 (deficiency 16).
%K A141547 nonn
%O A141547 1,1
%A A141547 _Vladimir Joseph Stephan Orlovsky_, Aug 16 2008
%E A141547 a(9)-a(14) from _Robert G. Wilson v_, Aug 17 2008
%E A141547 a(15)-a(24) from _Donovan Johnson_, Dec 21 2008
%E A141547 a(25)-a(28) from _Donovan Johnson_, Dec 08 2011