This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A141556 #13 Jan 29 2023 08:01:42 %S A141556 21,49,70,77,88,105,117,176,185,192,205,236,247,292,301,309,323,345, %T A141556 365,394,405,411,427,435,455,478,490,501,513,538,554,567,585,622,636, %U A141556 640,655,675,713,747,759,767,785,794,833,845,854,862,891,905,921,933,978 %N A141556 Composites of the form c(p(n)) + p(c(n)), where c(n) = n-th composite and p(n) = n-th prime. %e A141556 For n=1, c(1)= 4, p(1)= 2; c(2) + p(4) = 6 + 7 = 13 (prime). %e A141556 For n=2, c(2)= 6, p(2)= 3; c(3) + p(6) = 8 + 13 = 21 = a(1). %e A141556 For n=3, c(3)= 8, p(3)= 5; c(5) + p(8) = 10 + 19 = 29 (prime). %e A141556 For n=4, c(4)= 9, p(4)= 7; c(7) + p(9) = 14 + 23 = 37 (prime). %e A141556 For n=5, c(5)=10, p(5)=11; c(11) + p(10) = 20 + 29 = 49 = a(2). %e A141556 For n=6, c(6)=12, p(6)=13; c(13) + p(12) = 22 + 37 = 59 (prime). %e A141556 For n=7, c(7)=14, p(7)=17; c(17) + p(14) = 27 + 43 = 70 = a(3). %o A141556 (PARI) p(n) = prime(n); \\ A000040 %o A141556 c(n) = for(k=0, primepi(n), isprime(n++)&&k--); n; \\ A002808 %o A141556 select(x->(!isprime(x)), vector(70, n, c(p(n)) + p(c(n)))) \\ _Michel Marcus_, Jan 29 2023 %Y A141556 Cf. A000040, A002808, A141555. %K A141556 nonn %O A141556 1,1 %A A141556 _Juri-Stepan Gerasimov_, Aug 14 2008 %E A141556 Edited and corrected by _Ray Chandler_, Aug 19 2008