This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A141591 #12 Sep 18 2024 11:23:57 %S A141591 1,1,-1,-1,2,-1,-1,2,2,-1,-1,2,8,2,-1,-1,2,22,22,2,-1,-1,2,52,132,52, %T A141591 2,-1,-1,2,114,604,604,114,2,-1,-1,2,240,2382,4832,2382,240,2,-1,-1,2, %U A141591 494,8586,31238,31238,8586,494,2,-1,-1,2,1004,29216,176468,312380,176468,29216,1004,2,-1,-1,2,2026,95680,910384,2620708,2620708,910384,95680,2026,2,-1 %N A141591 Triangle, read by rows, T(n, k) = 2*A123125(n-1, k), for n >= 2, otherwise T(n, 0) = T(n, n) = -1, with T(0, 0) = T(1, 0) = 1. %D A141591 Douglas C. Montgomery and Lynwood A. Johnson, Forecasting and Time Series Analysis, McGraw-Hill, New York, 1976, page 91. %H A141591 G. C. Greubel, <a href="/A141591/b141591.txt">Rows n = 0..50 of the triangle, flattened</a> %F A141591 T(n, k) = 2*A123125(n-1, k), with T(0, 0) = T(1, 0) = 1, otherwise T(n, 0) = T(n, n) = -1. %F A141591 Sum_{k=0..n} T(n, k) = 2*033312(n), for n >= 1, otherwise 1 (n=0). %F A141591 From _G. C. Greubel_, Sep 15 2024: (Start) %F A141591 T(n, k) = 2*A008292(n, k) for n >= 2, 1 <= k <= n-1, with T(n, 0) = T(n, n) = -1, T(0, 0) = T(1, 0) = 1. %F A141591 T(n, n-k) = T(n, k) for n >= 2. (End) %e A141591 Triangle begins as: %e A141591 1; %e A141591 1, -1; %e A141591 -1, 2, -1; %e A141591 -1, 2, 2, -1; %e A141591 -1, 2, 8, 2, -1; %e A141591 -1, 2, 22, 22, 2, -1; %e A141591 -1, 2, 52, 132, 52, 2, -1; %e A141591 -1, 2, 114, 604, 604, 114, 2, -1; %e A141591 -1, 2, 240, 2382, 4832, 2382, 240, 2, -1; %e A141591 -1, 2, 494, 8586, 31238, 31238, 8586, 494, 2, -1; %e A141591 -1, 2, 1004, 29216, 176468, 312380, 176468, 29216, 1004, 2, -1; %t A141591 (* First program *) %t A141591 f[x_, n_]:= f[x, n]= (1-x)^(n+1)*Sum[k^n*x^k, {k, 0, Infinity}]; %t A141591 Table[Simplify[f[x, n]], {n, 0, 10}]; %t A141591 Join[{{1}}, Table[Join[CoefficientList[2*f[x,n] -1, x], {-1}], {n, 0, 10}]]//Flatten %t A141591 (* Second program *) %t A141591 Eulerian[n_, k_]:= Sum[(-1)^j*(k-j)^n*Binomial[n+1,j], {j,0,k}]; (* A008292 *) %t A141591 A141591[n_, k_]:= If[k==0 || k==n, -1, 2*Eulerian[n-1,k]] +2*Boole[n==0 || n ==1 && k==0]; %t A141591 Table[A141591[n,k], {n,0,12}, {k,0,n}]//Flatten (* _G. C. Greubel_, Sep 15 2024 *) %o A141591 (Magma) %o A141591 Eulerian:= func< n, k | (&+[(-1)^j*Binomial(n+1, j)*(k-j)^n: j in [0..k]]) >; // A008292 %o A141591 function A141591(n,k) %o A141591 if n eq 0 then return 1; %o A141591 elif k eq 0 and n eq 1 then return 1; %o A141591 elif k eq 0 or k eq n then return -1; %o A141591 else return 2*Eulerian(n-1,k); %o A141591 end if; %o A141591 end function; %o A141591 [A141591(n,k): k in [0..n], n in [0..12]]; // _G. C. Greubel_, Sep 15 2024 %o A141591 (SageMath) %o A141591 @CachedFunction %o A141591 def A008292(n,k): return sum((-1)^j*binomial(n+1,j)*(k-j)^n for j in range(k+1)) %o A141591 def A141591(n,k): %o A141591 if (k==0 and n==0): return 1 %o A141591 elif (k==0 and n==1): return 1 %o A141591 elif (k==0 or k==n): return -1 %o A141591 else: return 2*A008292(n-1, k) %o A141591 flatten([[A141591(n,k) for k in range(n+1)] for n in range(13)]) # _G. C. Greubel_, Sep 15 2024 %Y A141591 Cf. 033312, A109128. %K A141591 tabl,sign %O A141591 0,5 %A A141591 _Roger L. Bagula_ and _Gary W. Adamson_, Aug 20 2008 %E A141591 Edited and new name by _G. C. Greubel_, Sep 15 2024